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ABSTRACT: Estimating the effect of agricultural conservation practices on reducing nutrient loss using observa-
tional data can be confounded by factors such as differing crop types and management practices. As we may not
have the full knowledge of these confounding factors, conventional statistical meta-analysis methods can be mis-
leading. We discuss the use of two statistical causal analysis methods for quantifying the effects of water and
soil conservation practices in reducing P loss from agricultural fields. With the propensity score method, a sub-
set of data was used to form a treatment group and a control group with similar distributions of confounding
factors. With the multilevel modeling method, data were stratified based on important confounding factors, and
the conservation practice effect was evaluated for each stratum. Both methods resulted in similar estimates of
the conservation practice effect (total P load reduction avg. ~70%). In addition, both methods show evidence of
conservation practices reducing the incremental increase in total P export per unit increase in fertilizer applica-
tion. These results are presented as examples of the types of outcomes provided by statistical causal analyses,
not to provide definitive estimates of P loss reduction. The enhanced meta-analysis methods presented within
are applicable for improved assessment of agricultural practices and their effects and can be used for providing
realistic parameter values for watershed-scale modeling.
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INTRODUCTION

Implementing soil and water conservation prac-
tices is an important part of sustainable agriculture.
In response to increased funding of conservation pro-
grams in the Farm Security and Rural Investment
Act of 2002, the U.S. Department of Agriculture initi-
ated the Conservation Effects Assessment Program
(CEAP) to provide scientific understanding of the

impacts and benefits of conservation practices (Duri-
ancik et al., 2008). CEAP produced a comprehensive
bibliography on available literature, a suite of mecha-
nistic models, and a series of model simulations on
the effects of conservation practices at a watershed
level for many regions of the United States. Many
parameters used in watershed models are based on
studies in the 1980s (e.g., Beaulac and Reckhow,
1982). Consequently, CEAP also facilitated collection
of field-scale nutrient loading data for assessing vari-
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ous agricultural conservation practices. To support
CEAP and other national modeling and assessment
efforts, the Measured Annual Nutrient loads from
AGricultural Environments (MANAGE) database was
created, summarizing 40 studies reported in peer-
reviewed publications (Harmel et al., 2006). The data-
base provides readily accessible, easily queried water-
shed characteristic, nutrient export, and
concentration data to guide policy and management
decisions based on comparative nutrient load infor-
mation from various land management alternatives.
Harmel et al. (2008) expanded the database and
added runoff concentration data. The data set
includes studies conducted in 18 states, mainly in the
Midwest states along the Mississippi River. It con-
tains 1,677 watershed-years of data for various agri-
cultural land uses, including pasture/rangeland, corn,
various crop rotations, wheat/oats, barley, citrus, veg-
etables, sorghum, soy beans, cotton, fallow, and pea-
nuts. Harmel et al. (2008) provides detailed
information on spatial distribution of study sites and
summarizes the variables (data types) included
(Table 1). MANAGE compiles and summarizes mea-
sured annual nitrogen (N) and phosphorus (P) load
and concentration data representing field-scale trans-
port from agricultural and forest land, and drainage
studies were recently added to further expand the
database (Christianson and Harmel, 2015).

In the Farm Bill, federal funds are allocated for
USDA conservation programs to provide financial
assistance (i.e., for implementing practices) or techni-
cal assistance (i.e., for designing practices). Practices
designed to control sediment loss were previously
assumed to also control P loss from agricultural
fields, and they do control particulate P losses; how-
ever, their effects on soluble P fate and transport has
received intensive research attention in recent years.
No-till has been promoted since the 1980s to decrease

TABLE 1. Variables (data types) in the MANAGE Database.

Variables Definition

Watershed ID Name of the watershed
Location (city, state) City and state/province of the study

(occasionally only a county or region was
specified)

State US state (or Canadian province) included
to aid state-specific queries

Location (Lat, Lon) Latitude and longitude of the study
Date Beginning and end of period with annual

nutrient load data (not necessarily the
entire study duration)

Watershed years Product of the number of monitored
watersheds and the number of years with
annual nutrient load data (ws-yr)

Land use Identification of crop or vegetation type(s)
and crop rotation

Tillage Description of the tillage management
divided into four options: no-till,
conservation, conventional, or pasture

Conservation practice Five options: waterway, terrace, filter
strip, riparian buffer, or contour farming

Dominant soil type Soil textural class and soil series
Hydrologic soil group NRCS hydrologic soil group (HSG)

classification (A, B, C, or D)
Soil test P Maximum and minimum soil test P values

for records with multiple watersheds or
multiple years (ppm)

Soil test P extractant Extractant used to determine soil test P
Land slope Maximum and minimum land surface

slopes for records with multiple
watersheds (%)

Watershed size (ha) Maximum and minimum watershed sizes
for records with multiple watersheds

Type of fertilizer
applied

Macro-nutrient composition (N-P-K)

Fertilizer
application method

Fertilizer application method divided into
four options: surface, injected,
incorporated, or other

Annual maximum, minimum, and average values are provided for
the following categories when specified

N applied The total annual amount of N applied to
watershed(s) from all fertilizer sources
(kg/ha/yr)

P applied The total annual amount of P applied to
watershed(s) from all fertilizer sources
(kg/ha/yr)

Precipitation Annual precipitation (mm/yr)
Runoff Annual runoff (mm/yr)
Soil loss Annual soil loss (kg/ha/yr)
Dissolved N The total amount of dissolved N lost from

the watershed(s) (kg/ha/yr)
Particulate N The total amount of N lost from the

watershed(s) in a particulate form
(kg/ha/yr)

Total N Total N load was specified in a number of
the publications. If the total N load was
not specified, it was determined as the
sum of dissolved and particulate N loads,
when both were specified (kg/ha/yr)

Dissolved P The total amount of dissolved P lost from
the watershed(s) (kg/ha/yr)

(continued)

TABLE 1. (Continued)

Variables Definition

Particulate P The total amount of P lost from the
watershed(s) in a particulate form
(associated with sediment) (kg/ha/yr)

Total P Total P load was specified in a number of
the publications. If the total P load was
not specified, it was determined as the
sum of dissolved and particulate P loads,
when both were specified (kg/ha/yr)

Analysis technique Techniques used to determine dissolved,
particulate, and total N or P composition
in runoff

Flow indication Indication of the flow transport
mechanisms (total, surface, base)
addressed
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sediment loss from fields. Similarly, terraces and/or
grassed waterways are installed in areas with con-
centrated flow and likely prone to gully erosion.
These practices also reduce particulate P loading.
Crop rotation and cover crops are increasingly used
to control nutrient losses and improve soil quality.
Other practices to limit nutrient loss include: contour
tillage, reduced tillage, applying P based on soil test
P recommendations, and avoiding application on fro-
zen soils. See Sharpley et al. (1994, 2000), Sharpley
and Withers (1994), and Smith et al. (2015) for more
discussion of the impacts of conservation practices on
P loss.

Initial analysis by Harmel et al. (2006) showed
that annual particulate and total N loads can be
reduced by using conservation tillage or no-till meth-
ods, but conservation effects were less evident for dis-
solved N and all P forms. In addition, some results
were seemingly counterintuitive. For example, aver-
age annual N and P loads from fields with one or
more conservation practices were often larger than
from fields without conservation practices. The pre-
sent analysis focused on the explanation of the appar-
ent counterintuitive impacts of conservation practices
on P loads.

Many previous studies on the effectiveness of con-
servation practices were focused on model simula-
tions (Cho et al., 2010; USDA-NRCS, 2011a, b, 2012a,
b, c; White et al., 2014). These simulation studies
focused on watershed scale effects and were often
based on an assumed level of field-scale reduction
rate. As a result, field-scale nutrient reduction is
often the basis of watershed-scale modeling studies.
As randomized experiments for estimating field-scale
nutrient reduction rates are rarely available, we must
often use either results from field experiments limited
to specific conditions or cross-sectional data such as
MANAGE. As in almost all cross-sectional data,
MANAGE represents a form of observational data
and can be unsuitable for causal inference using con-
ventional statistical approaches. In this article, we
discuss the use of two statistical causal analysis
methods (propensity score matching and multilevel
modeling) designed to quantify causal effects, thereby
expanding their applicability.

Statistical Causal Analyses

With databases such as MANAGE, fields with and
without conservation practices can be compared to
derive the practice effect. However, conventional sta-
tistical meta-analysis methods can be misleading
because of confounding factors. For example, conser-
vation practices are not applied randomly but are
typically applied to fields that are more prone to sedi-

ment and nutrient loss. Similarly, data in MANAGE
indicate that fields with conservation practices are
more likely to receive higher fertilizer applications
(Figure 1), which can mask the effect of the variable
of interest (conservation practice). As a result,
directly comparing nutrient loads between fields with
and fields without conservation practices using obser-
vational data can be misleading. Fertilizer applica-
tion is only one of many potential factors that can
confound the result of comparing nutrient loads. R.A.
Fisher recognized this problem when studying data
from agricultural experiments, and he proposed the
use of randomized experiments for causal inference
(Fisher, 1971). However, randomized experiments are
not always feasible. Observational data, such as
MANAGE, are often the main source of information
in many fields (e.g., social sciences and economics).
Causal inference using observational data requires a
set of specialized tools to select subsets of data to
form a treatment subset and a control subset.

In our case, the treatment subset is a subset of all
fields with one or more conservation practices, and the
control subset is a subset of all fields without any con-
servation practices. These two subsets should differ
only with respect to the conservation practices. As a
result, difference in mean P loads from these two sub-
sets can be attributed to the implementation of conser-
vation practice(s). To ensure that the two subsets are
“similar,” we can use the propensity score matching
method (Rubin, 2006). However, the propensity score
method requires that we include all confounding fac-
tors. In many cases, researchers did not know or did
not record all confounding factors when collecting
data. As a result, we cannot definitely show that the
basic assumption of the propensity score matching
method is met in any specific study.

Propensity Score

The propensity score method is an approach for
subsetting and matching (Rosenbaum and Rubin,
1983). That is, in the absence of randomized experi-
mental data, we may identify two subsets of fields
that have the same distributions on all observed
covariates (confounding factors) but differ only in
treatment assignment. If there are no other unob-
served covariates that can predict treatment assign-
ment (hidden confounding factors), we can consider
that the treatment assignment is effectively random
and can be used for causal analysis. The propensity
score method has a long history in social science
research, and some important results are included in
Rubin (2006).

A propensity score is the conditional probability of
a subject (a field) receiving the treatment (conserva-
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tion practice) given all observed covariates. In a ran-
domized experiment, the probability of a field receiv-
ing a conservation practice is determined by a flip of
a coin, or 0.5; however, with observational data, some
fields are more likely to have conservation practices
than others (e.g., fields with higher fertilizer applica-
tions are more likely to have conservation practices,
Figure 1), thereby the propensity score is not 0.5.
Statistically, we can use covariates to “predict’’ the
likelihood whether conservation practices are applied
to a field. This likelihood is the propensity score.
Using the propensity score, we match a field with
conservation practices to a field without conservation
practices if the two fields have similar propensity
scores. By itself, a propensity score is meaningless.
However, mathematical theory and experience have
shown that when grouping subjects with similar
propensity scores, the treatment and control groups
will have similar covariate distributions (Gelman and
Hill, 2007). In other words, propensity score matching
retrospectively creates a control and a treatment
group that can be considered as “randomized.”

In practice, the propensity score is estimated by fit-
ting a logistic regression model (Qian, 2010; Chapter
8) using all available covariates to predict the treat-
ment assignment (Gelman and Hill, 2007, Sec-
tion 10.3). In this case, we create a binary variable T
to represent whether a field received conservation
practices (T = 1) or not (T = 0). A logistic regression
model is fit using T as the binary response and all
available covariates as predictors. The model pre-
dicted probability of T = 1 for an observation is the
propensity score for this observation. For each
observed field in the treatment group, we match one
or more observed fields from the control group which
have a similar predicted probability of T = 1. Not all
observed fields have matches. Consequently, the
propensity score matched new dataset is a subset of
the original data.

The resulting data have balanced covariates in the
treatment and control groups; therefore, we can com-
pare the mean P loads of the two groups either using
a t-test or using model-based adjustments (regres-
sion). When using a t-test, we are fitting a regression
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FIGURE 1. Box-Whisker Plots Comparing Fields with and without Conservation Practices; the Higher Mean Total P
and Total N Loads from Fields with Conservation Practices (top row) Can Be Partially Explained

by the Larger Fertilizer Applications to Fields with Conservation Practices.
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model with the treatment indicator variable T as the
only covariate:

yi ¼ b0 þ hTi þ ei ð1Þ

where i = 1, . . . n, Ti = 0 or 1 represents the ith
field is in the control or treatment group, b0 is the
mean of the response for fields without conservation
practices (control) and h is the estimated treatment
effect, and ɛi is the residual term, assumed to fol-
low a normal distribution with mean 0 and a con-
stant variance. The treatment effect h is the
difference in mean P loads between fields with and
without conservation practices. Because the P load
is typically (natural) log transformed to conform to
the normality assumption (van Belle, 2008), the dif-
ference represents a multiplicative factor in the
original scale. Expressed in original scale, the effect
h is a multiplicative factor of eh. For example,
h = �0.8 represents a factor of 0.45. This means
that P loads from fields with conservation practices
is 0.45 of the loads from fields without conservation
practices (or 55% reduction).

When important covariates are available, we can
control their effects on P loads by adding them to the
t-test of Equation (1):

yi ¼ b0 þ b1x1i þ � � � þ bkxki þ hTi þ ei ð2Þ

where x1, ���, xk are covariates, and h is known as the
causal effect after confounding factors are “con-
trolled.” Controlling for specific confounding factors
can often change the estimated h, as the meaning of h
is now the difference between treatment and control
for fields with identical controlled factors (e.g.,
planted with the same crop and with the same fertil-
izer application rate). When a confounding factor
(e.g., xk) affects the treatment effect, interactions
between T and xk can be considered:

yi ¼ b0 þ b1x1i þ � � � þ bkxk;i þ axkiTi þ hTi þ ei ð3Þ

The treatment effect is now axki + h, varying as a
function of the confounding factor xk. The effect of xk
(slope) is now bk + aTi, a function of the treatment.
In other words, the interaction effect not only
changes the treatment effect, but also the effect of
the confounding factor. With the interaction term, h
is now the effect when xk = 0. To ease interpretation,
we often center predictors by subtracting their
respective means (see Gelman and Hill, 2007, Chap-
ter 4). For example, xck ¼ xk � �xk. When a centered
predictor is 0 (xck ¼ 0), the original predictor is at its
mean (xk ¼ �xk.). As a result, the treatment effect h is
the effect when covariate xk is at its mean when the
regression model in Equation (3) was fit by using cen-

tered predictors. For this reason, we center all predic-
tors before fitting a regression model.

Multilevel Modeling

Multilevel models are also known as random
effects models or mixed effects models (Gelman and
Hill, 2007; Qian, 2010). When using multilevel mod-
els for causal inference, we rely on the proper stratifi-
cation to group data with similar attributes into
strata. Within each stratum, a regression model is
used:

yij ¼ b0j þ b1jx1ij þ � � � þ bkjxkij þ hjTij þ eij ð4Þ

where the subscript ij represents the ith observation
in the jth stratum. The multilevel model imposes a
common prior distribution on the regression model
coefficients:

b0j
..
.

bkj
hj

0
BBB@

1
CCCA�N

lb0
..
.

lbk
lh

0
BBB@

1
CCCA; R

2
6664

3
7775 ð5Þ

The common prior distribution creates a shrinkage
effect; therefore, it improves the overall model perfor-
mance (Qian et al., 2015).

Whereas the propensity score method produces an
estimate of the average effect h, the multilevel model
produces estimates for both the average effect lh and
effects for each stratum hj. In the propensity score
method, the confounding factors are balanced
through the matching process; therefore, the esti-
mated average effect is reliable, as long as there are
no hidden confounding factors. In the multilevel
model, the estimated stratum-specific and overall
average effects are contingent on the method of strat-
ification. As a result, the multilevel model relies on
subject matter knowledge to ensure that the stratifi-
cation method used is scientifically meaningful.

Objectives

Using the propensity score and the multilevel mod-
eling methods, we evaluated the effects of conserva-
tion practices represented in the MANAGE database.
The specific objectives were to: (1) demonstrate the
utility of applying the propensity score and multilevel
modeling methods to the assessment of agricultural
conservation practice effects, and (2) estimate the
average and crop-specific effects of agricultural con-
servation practices on runoff P losses; both in an
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effort to demonstrate the applicability of these meta-
analysis methods outside the social science realm.

MATERIAL AND METHODS

Data

To apply these statistical causal analysis methods,
meta-data were extracted from the MANAGE data-
base version 3 (Harmel et al., 2008), which summa-
rizes nutrient load and concentration data from 55
publications. Because very few studies in the data-
base included fields with a filter strip or riparian buf-
fer (1.5% of fields), we combined these two practices
into one category. As a result, we evaluated the
effects of four conservation practices [grassed water-
ways (USDA-NRCS, 2010a), contour farming (USDA-
NRCS, 2007a), terraces (USDA-NRCS, 2010b),
riparian forest buffer/filter strip (USDA-NRCS,
2007b, 2008)]. Our analyses (see Results and Discus-
sion) suggest that the effects of individual conserva-
tion practices or their combinations are similar. As a
result, we grouped the data into two groups, fields
with at least one conservation practice and fields
without any practice. The effect of conservation prac-
tices is defined as the amount of P loading reduction
due to one or more conservation practices while all
other factors are held constant.

Initial Analysis

We first grouped fields with nonzero P Applica-
tions into seven groups based on their conservation
practice combinations. Each field was assigned a
binary four digit code in following order: waterway,
buffer, contour farming, and terrace. Each digit
indicates whether that practice was implemented
(i.e., 1 present, 0 absent). For example, 0100 repre-
sents a field with a buffer (filter strip or forested
buffer), and 1001 represents a field with both a
grassed waterway and terraces. After controlling
the effects of soil loss, runoff, land use, tillage, and
fertilizer application method, the estimated inter-
cept and slope (P Applied random effects) were not
different from 0 for fields with 1+ conservation
practice, but fields without conservation practices
had significantly higher intercept and slope values
(Figure 2). As a result, we combined data from
fields with 1+ conservation practices and therefore,
estimated the effects of implementing 1+ conserva-
tion practices in fields with various crops and dif-
ferent fertilizer application methods.

Causal Analyses

Given that propensity score and multilevel model-
ing have their appeals and potential problems, we
applied both causal analysis methods to provide a
better understanding of the potential variation in the
effect of conservation practices. The propensity score
method estimates the average effect based on two
groups with similar distributions of covariates that
represent a subset of the original data. The multilevel
model method estimates the average effect dependent
on the adequacy of data stratification. When the
stratification method is justified, the multilevel model
also yields stratum-specific effects. Therefore, we
used both causal analysis methods to estimate the
average effect of one or more conservation practices
and thus increase the likelihood of detecting mistakes
(i.e., hidden confounding factors or inappropriate
stratification).

Intercept

 
−0.5 0.0 0.5

0 0 1 0

0 0 0 1

1 0 0 1

1 0 1 0

1 0 0 0

1 0 1 1

0 0 0 0

−0.743

log P Applied
−0.4 0.0 0.2 0.4

0 0 1 0

0 0 0 1

1 0 0 1

1 0 1 0

1 0 0 0

1 0 1 1

0 0 0 0

0.002

FIGURE 2. Estimated Multilevel Model Intercepts and Slopes for
Fields with Various Conservation Practices. The y-axis label indi-
cates whether any of the four conservation practices (waterway,
buffer, contour farming, and terrace) are implemented (1) or not
(0). The open circles are the estimated mean random effects and
the thick and thin lines are the mean �2 times standard error. The
bold numbers are the fixed effects [average intercept (�0.743) and
slope (0.002)]. The intercept represents mean of natural log of P
loss (log kg/ha/yr) and the slope is unit-less because the units of P
loss and fertilizer application are the same (both in log kg of P/ha/
yr). Because both the response and predictor variables are (natural)
log transformed, the slope is the % change in P loss per 1%
increase in fertilizer application (see Qian, 2010, p. 157).
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More importantly, we used the comparison of h
and lh to serve as a “method checking” step. If the
two estimates are similar, we are more confident on
the estimated overall effect. In other words, if the
two causal analysis methods produce the same con-
clusion, we can conclude that the methods are likely
correct.

All analyses were carried out in R (R Core Team,
2015). We followed the steps outlined in Gelman and
Hill (2007) for the propensity score method and used
the R function “lmer()” from package “lme4’’ (Bates,
2010) to fit the multilevel model. The MANAGE data-
base and our R code are in the online Supporting
Information.

Propensity Score. For the propensity score
method, we used seven potential covariates (P
applied, runoff, soil loss, land use, fertilizer applica-
tion method, tillage, and a term representing the
land use/fertilizer application method interaction).
We chose these covariates to represent factors impor-
tant in determining P loads. Some obvious covariates
(e.g., land slope, soil test P) were not included
because they were reported by only a small number
of studies in MANAGE.

The response variable (annual average total P
load) was log-transformed. In MANAGE two annual
total P loads were reported as 0, and they were
replaced by 0.002 (half of the smallest nonzero val-
ues) in the analysis. Numerical covariates (P applied,
runoff, and soil loss) were transformed using log
(x + 1) because of numerous 0 values in these covari-
ates. When observations with missing values were
removed, the dataset with these covariates had 135
observations, among which 29 used 1+ conservation
practices. Using the nearest neighbor matching
method, each of the 29 fields was matched with a
field without conservation practices. The resulting
subset had a total of 58 observations.

Multilevel Modeling

After trying many different multilevel model
forms, a final model was selected based on both the
relevancy of the predictors and AIC. We started with
the most comprehensive model, which included all
relevant numeric predictors and allowed varying
intercept and slopes for all stratifications from rele-
vant categorical predictors. The relevant numerical
predictors were P applied, runoff, and soil loss. The
relevant factor predictors were land use, tillage, and
fertilizer application method. We then systematically
eliminated terms that were statistically insignificant
and that increased the AIC value. The resulting best
model was:

log TPLoadijk

� � ¼ b0j þ b1x1ijk þ b2x2ijk

þ b3jkx3ijk þ ajkx3ijkTijk þ hjkTijk þ e

ð6Þ

where subscript ijk represents the ith observation in
the jth land use type, and using kth fertilizer applica-
tion method. Subscripts for model coefficients denote
whether the respective coefficient values vary by
groups. For example, b0j indicates that the intercept
b0 is allowed to vary by land use type, and hjk repre-
sents that the conservation practice effect varies both
by land use type and by fertilizer application meth-
ods. The varying coefficients were presented in terms
of an overall mean (the fixed effect) and a group
adjustment (random effects) (Table 2). The estimated
model coefficients for a specific land use and fertilizer
application method were the sum of the fixed effect
and the appropriate random effects. For example, the
intercept for corn field was 0.213 (0.133 + 0.080), and
the conservation practice effect for a corn field using
fertilizer application method “Incorporated” was
�0.881 (�1.147�0.161 + 0.427).

Because both the fixed effects and random effects
were estimated with uncertainty, the standard devia-
tion of the estimated coefficients for a specific land
use was calculated as the square root of the sum of
squared standard deviations. For example, the corn
field intercept of 0.213 was the sum of two terms, and

TABLE 2. Multilevel Model (Equation 6) Coefficients
and Standard Error (SE). Units of model response and predictor

variables are defined in Table 1.

Fixed Effects

Coefficient Estimates SE

b0 0.133 0.199
b1 0.416 0.070
b2 0.513 0.048
b3 0.246 0.052
h �1.147 0.465
a �0.351 0.191
Random effects (land use)
Category b0 (SE) h (SE) a (SE)
Alfalfa 0.596 (0.302) �1.199 (0.607) �0.155 (0.079)
Corn 0.080 (0.139) �0.161 (0.280) �0.021 (0.036)
Cotton 0.010 (0.249) �0.021 (0.501) �0.003 (0.065)
Fallow 0.602 (0.402) �1.211 (0.810) �0.157 (0.105)
Oats/wheat 0.112 (0.236) �0.224 (0.474) �0.029 (0.065)
Pasture �0.305 (0.108) 0.614 (0.218) 0.080 (0.028)
Peanuts �0.293 (0.302) 0.589 (0.607) 0.076 (0.079)
Rotation �0.660 (0.178) 1.327 (0.357) 0.172 (0.046)
Sorghum �0.142 (0.241) 0.286 (0.484) 0.037 (0.063)
Random effects (fertilizer application method)
Category h (SE) a (SE)
Incorporated 0.427 (0.129) 0.286 (0.087)
Injected �0.272 (0.170) �0.182 (0.114)
Surface applied 0.091 (0.188) 0.061 (0.126)
Unknown �0.246 (0.256) �0.165 (0.172)
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their respective standard errors were 0.199 and
0.139. The estimated standard error for the corn field
intercept was then 0.243. Likewise, the estimated
conservation practice effect for a corn field using fer-
tilizer application method of “Incorporated” was a
sum of three terms (each with a standard error), and
the standard error of the estimated effect was the
squared root of the sum of squares of the three
respective standard errors ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4652 þ 0:282 þ 0:1292

p
Þ

or 0.56. We note that this approach can overestimate
the uncertainty because the correlations among
model coefficients were not considered.

RESULTS AND DISCUSSION

Propensity Score

A comparison of the distributions of the amount of
the covariate P Applied before and after matching
(Figure 3) illustrates results typical of the propensity
score method. Before matching, the median annual
total P loads were 0.63 and 0.99 kg/ha/yr for fields
without and with any conservation practices, respec-
tively. After matching, total P loads were 2.94 kg/ha/
yr without any conservation practice and 0.97 kg/ha/
yr with one or more.

Without considering covariates, the estimated
treatment effect (logarithmic scale) can be estimated
by using a t-test. The estimated effect was
h = �0.9563 (p = 0.01). The standard deviation of h
was 0.36. This value represents a multiplicative fac-
tor of e�0.9563 = 0.3843, which is a 62% reduction in
total P loads [with a 95% confidence interval of (21%,
81%)]. This value is the conservation practice effect
averaged over all confounding factors represented in
the propensity score matched dataset.

Using relevant covariates, we further adjusted the
estimated effect using regression. The best model
[based on Akaike information criterion or AIC
(Akaike, 1974)] uses runoff, soil loss, and P applied
as covariate and the slope of P applied varies
between the treatment and control groups. The fitted
model is of the form:

logðTPLoadÞ ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ ax3T þ hT þ e

ð7Þ

where x1, x2, and x3 are centered log covariates run-
off, soil loss, and P applied, respectively (e.g.,
x1 ¼ logðRunoffÞ � logðRunoffÞ). With this formula-
tion, b0 is the mean log total P load for fields without
conservation practices (T = 0) when runoff, soil loss,
and P applied are close to their respective (geometric)
means. Because both the response and the predictors
were log-transformed, the slopes b1, b2, b3 represent
the percent changes in total P load for every 1%
change in the respective predictor (Qian, 2010, page
157). For example, cb1 ¼ 0:77 indicates approximately
0.77% (95% CI: 0.77 � 0.18) increase in total P load
for every 1% increase in runoff. h is the average con-
servation practice effect. a is the conservation prac-
tice effect on the slope of covariate P applied [i.e.,
slope of x3 is b3 = 0.14 (se = 0.1) for fields without
any conservation practice (T = 0), and the slope for x3
is b3+a = �0.05 (se = 0.16) for fields with conserva-
tion practice (T = 1)]. The estimated ĥ ¼ �1:06
(se = 0.2) represents a multiplicative factor of
e�1.06 = 0.35, or a 65% reduction in total P loads [95%
CI: (48%, 77%)] for fields with average P applied
(12.8 kg/ha/yr), as well as average runoff and soil
loss. Using the estimated model coefficients (Table 3),
we see that effect of P applied for control (b3) is 0.14
(0.14% increase in P loads for every 1% increase in P
applied), and the same effect for treatment (b3 + a) is
�0.05 (not different from 0). We note that the esti-
mated b3 is statistically not different from 0. This is
likely a result of the reduced sample size due to
propensity score matching. We fit the same model
using data before matching, and the estimated b3 for
fields without any conservation practices was positive
(0.33 � 2 9 0.05), while the slope for fields with con-
servation practices was not different from 0 (Table 1).
Because the slope represents the increase in log P
loads per unit increase of log P applied, a negative
interaction term (a) suggests that conservation prac-
tices also reduced the incremental contribution to P
loads from applied fertilizer. In other words, conser-
vation practices are more effective for fields with a
higher fertilizer application rate; the estimated 65%
reduction is applicable to a field with the mean value
of P applied (12.8 kg/ha/yr). Because of the high
uncertainty for a, we reestimated the effect by remov-
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FIGURE 3. Distributions of the Centered log P Applied
Are Compared between Fields with and
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and after (right panel) Propensity Score Matching.

JAWRA JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION8

QIAN AND HARMEL



ing the interaction term and resulting h to be �1.19
(SE = 0.18) [or 70% (56%, 79%) reduction]. This value
represents the conservation practice effect when P
applied, runoff, and soil loss are the same for both
treatment and control fields.

Multilevel Modeling

We interpreted the three numbers used to calcu-
late the effect of conservation practices applied to
corn fields using fertilizer application method
“Incorporated” (�1.147�0.161 + 0.427) as follows.
The average conservation practice effect across all
crops was lh = �1.147 (SE = 0.465), which is a fac-
tor of e�1:147 ¼ 0:318 or a 68.2% reduction [95% con-
fidence interval: (20%, 87%)]. For an average corn
field, the effect is �1.147�0.161 (=�1.308 and
SE = 0.54) or 73% with a 95% confidence interval
of (20%, 91%). That is, conservation practices are
more effective for corn fields than for the average
across all field types. If applied fertilizer was incor-
porated on the corn field, the conservation practice
effect was then �0.881 (59% reduction). The change
suggests that the “Incorporated” method is itself an
effective means for reducing fertilizer losses through
surface runoff, and the incremental effect of conser-
vation practices is thereby reduced. We note that
the random effect for fertilizer application method
of “Injected” is negative, which implies that this
method may result in increased P load. This result
is counterintuitive, and it is likely a result of
imbalance in the data. There were 24 fields in the
MANAGE database that used the injection method.
Seventeen of them were corn fields, two each were
cotton and soybeans, and three were rotations.
Likewise, the method “Surface Applied” was used
mostly on pasture. Given that these effects were
not statistically different from 0, we could only con-
clude that the current database may be inadequate
for assessing the effects of fertilizer application
methods.

Because the methods produced similar estimates of
the average effect, we used multilevel modeling to
further explore how conservation practices change
the effect of P applied (the slope of P applied). For
example, we used the fitted model to understand the
relationship between total P load and P applied,
assuming effects of other factors are accounted for. In
Figure 4, we graphed the relationship of
log (TPLoadij) = b0j + b3jx3 + hjTij + ajx3ijTij, which
represents a comparison between fields with conser-
vation practices and fields without using average run-
off and soil loss and without considering the effects of
fertilizer application methods. In all crops, the effect
of conservation practices (distance between the
dashed and solid lines) increased when P applied
increased. In most cases, the slope for fields with con-
servation practices (b3j + a2j) were not statistically
different from 0, indicating no significant increase in
P load when fertilizer application increased in fields
with conservation practices.

CONCLUSIONS

Using observational data is often necessary when
studying effects of natural resource management
practices because comprehensive randomized experi-
ments are cumbersome and expensive. In the present
study, we demonstrated the applicability of two cau-
sal statistical methods (propensity score and multi-
level modeling) to quantify the effects of water and
soil conservation practices in reducing P loss from
agricultural fields. These methods lead to more con-
clusive results than conventional statistical meta-
analysis methods, which do not address confounding
factors; therefore, application of these methods that
are commonly applied in the social science realm can
improve meta-analyses related to agricultural conser-
vation.

As in all statistical methods, the validity depends
on underlying assumptions. The propensity score
method assumes no hidden confounding factors
(known as the strong ignorable treatment assignment
assumption), while the multilevel modeling method
assumes adequacy of data stratification. Because
these conditions are impossible to verify, we used
both methods and compared the results. The average
effects (after controlling the effects of confounding
factors) from the two methods were similar even with
large differences in sample sizes (58 for propensity
score and 135 for multilevel modeling). The similarity
of the 70% reduction from the propensity score and
the 68% reduction from the multilevel model suggests
that both methods are valid, in the case for estimat-

TABLE 3. Regression Model (Equation 7) Coefficients (and stan-
dard error, SE) before and after Propensity Score Matching. The
unit of the regression model response variable is (natural) log kg/
ha/yr, and the units of predictor variables are log mm/yr for x1 and
log kg/ha/yr for x2 and x3.

Coefficient After Matching (SE) Before Matching (SE)

b0 0.30 (0.16) 0.03 (0.16)
b1 0.77 (0.09) 0.50 (0.07)
b2 0.38 (0.06) 0.47 (0.05)
b3 0.14 (0.10) 0.33 (0.05)
h �1.06 (0.20) �0.75 (0.20)
a �0.19 (0.13) �0.36 (0.11)
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ing the P loss reduction due to implementation of one
or more conservation practice. In spite of these favor-
able results, the average rates of reduction should
not be universally applied because the analyses were
limited somewhat by limited data availability. Fur-
thermore, conservation practices were shown to
reduce incremental P loads per unit increase in fertil-
izer application rate; however, the P load reduction
due to individual practices was not quantified
because of the limited sample size for each conserva-
tion practice.

The value of our study can be realized in two ways.
First, our estimates of conservation practices can be
used in watershed modeling for scenario simulations
to study the general effect on a watershed scale. Sec-
ond, our estimates can be used to develop a prior dis-
tribution in a subsequent study of effects of
individual conservation practices. A Bayesian estima-
tion approach is most effective when informative

prior distributions are available. Our study provides
the basis for developing such priors.

SUPPORTING INFORMATION

Additional Supporting Information may be found
in the online version of this article: the MANAGE
dataset and R scripts for (1) processing the data, (2) calcu-
lating propensity score and matching, (3) multilevel mod-
eling, and (4) producing figures used in the manuscript.
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