A Regional Investigation of Nitrogen Rate Prescription, Hybrid, and Population on Maize Yield and Nitrogen Use

Principle Investigators: Richard Ferguson, University of Nebraska, Lincoln, NE David Franzen, North Dakota State University, Fargo, ND Newell Kitchen, USDA-ARS, Columbia, MO

Partners:

John Shanahan, Dupont Pioneer Paul Fixen, International Plant Nutrition Institute Jim Schepers, Holland Scientific

Graduate Student: Laura Stevens, University of Nebraska, Lincoln, NE

A progress report prepared for the Pioneer Crop Management Research Awards Program

and

The International Plant Nutrition Institute

January 14, 2013

Introduction

Nitrogen, an essential element, is often limiting to plant growth. There is great value in determining the optimum quantity and timing of N application to meet crop needs while minimizing losses. Growing conditions may vary greatly by year and location resulting in differing N needs and complicating N recommendations. Applying a portion of the total N during the growing season allows for adjustments which can be responsive to actual field conditions. The Maize-N model was developed to estimate the economically optimum N fertilizer rates for maize by taking into account soil properties, indigenous soil N supply, local climatic conditions and yield potential, crop rotation, tillage and fertilizer formulation, application method and timing (Setiyono, et al., 2011). Active crop canopy sensors are responsive to canopy N status during the growing season and can also be used to determine in-season N application rates. The objective of this study is to evaluate these two approaches for determining in-season N rates and specifically: (i) determine the utility of active optical ground-based sensors over a 3-state region, including sites in Missouri, Nebraska and North Dakota in predicting N need and enhancing corn yield, (ii) determine the effect of plant population on the effectiveness of in-season N-rate prediction and application, (iii) determine the effect of using a hybrid with high drought tolerance versus low drought tolerance on in-season N-rate prediction and application, (iv) determine the effect of using the sensorbased approach in a highly productive soil compared to a site with lower soil productivity, (v) investigate the interactions of the sensor approach versus traditional N management, plant population, soil productivity and hybrid type on corn yield and (vi) compare the performance of the recently released Maize-N decision tool (Setivono, et al., 2011) economic optimum N rate (EONR) calculations to in-season, sensor-based N management.

Materials and methods

Two experimental sites per state were selected, located in relatively close proximity to each other in order to minimize weather interactions. In Nebraska, sites were located at the South Central Agricultural Research Laboratory near Clay Center (NE-CC), and in Merrick County, near Grand Island (NE-MC). Missouri sites were both near Columbia, identified as Rollins (MO-RO) and Lone Tree (MO-LT). North Dakota sites were located near Durbin (ND-DN) and Valley City (ND-VC). Site selection was based on expected corn yield potential at that location. A high yield potential and lower yield potential site was chosen for each state. The lower expected yield site was chosen due to a limiting feature such as drainage, soil texture or rooting depth. Sites are depicted in Figure 1. Weather data is shown in Figure 2. Soil information is in Table 1.

The experiment was conducted in a randomized complete block with four replications at each site. Two corn hybrids were used at each location, characterized by having a low drought score (LDS) and high drought score (HDS). Each hybrid was planted at a moderate and high population. Population and drought scores by site are in Table 2. Plots

Figure 1: Site locations.

were approximately 50 feet long and varied from 4 to 6 rows wide depending on location. Tillage and previous crop varied by location. Pre-plant soil samples for pH, OM, P, K and NO_3 -N were obtained for each site (Table 3). Pre-plant, at-planting and in-season N application method and N source varied by state.

Figure 2: Precipitation, Irrigation and Air Temperature for all sites for the 2012 growing season.

Table 1: Soil series and taxonomic class arranged by site. Site relative expected productivity is indicated.

Site	Series	Taxonomic Class	% Trt Area
NE - CC <i>High yield potential</i>	Crete silt loam, 0-1%	Fine, smectitic, mesic Pachic udertic Argiustolls	100%
NE - MC Low yield potential	Fonner sandy loam, rarely flooded	Sandy, mixed, mesic Cumulic Haplustolls	80.5%
	Novina sandy loam, rarely flooded	Coarse-loamy, mixed, superactive, mesic Fluvaquentic Haplustolls	19.5%
MO - RO	Haymond silt loam,	Coarse-silty, mixed, superactive, mesic Dystric	100%
High yield potential	0-3%	Fluventic Eutrudepts	
MO - LT Low yield potential	Mexico silt loam, 1-4%, eroded	Fine, smectitic, mesic Vertic Epiaqualfs	100%
ND - DN	Fargo silty clay,	Fine, smectitic, frigid Typic Epiaquerts	100%
High yield potential	0-1%		
ND - VC	Barnes loam,	Fine-loamy, mixed, superactive, frigid Calcic	100%
Low yield potential	3-6%	Hapludolls	

Table 2: Hybrid and planting population arranged by site.

Site	Hyl	brid	Planting Population (seeds per acre)		
	HDS	LDS	High	Low	
NE – CC	Pioneer 1498	Pioneer 33D49	42,000	32,000	
NE – MC	Pioneer 1498	Pioneer 33D49	42,000	32,000	
MO – RO	Pioneer 1498	Pioneer 33D49	41,000	31,000	
MO – LT	Pioneer 1498	Pioneer 33D49	41,000	31,000	
ND – DN	Pioneer 8906	Pioneer 39N99	42,000	32,000	
ND – VC	Pioneer 8906	Pioneer 39N99	42,000	32,000	

Table 3: Pre-plant soil samples arranged by site. Phosphorus test used is indicated below value.

Site	Organic Matter	Р	K	рН	NO ₃ -N (lbs N/ac 3 ft)	Irrigation NO ₃ - N Credit
NE – CC	3.88%	27 ppm *M3P	482 ppm	6.35	132	~10 lbs/ac
NE – MC	1.65%	41 ppm M3P	326 ppm	6.65	68	~24 lbs/ac
MO – RO	1.50%	106 lbs/ac **B1P	217 lbs/ac	7	45	
MO – LT	2.60%	26 lbs/ac B1P	145 lbs/ac	5.7	38	
ND – DN	5.30%	32 ppm ***OP	600 ppm	7.6	45	
ND – VC	3.60%	10 ppm OP	300 ppm	6.3	73	

*M3P=Mehlich-3 Extract, **B1P=Bray 1-P Extract, ***OP=Olsen Extract

Four N treatments were used: unfertilized check, N-rich reference, sensor-based and model-based. All sites had an unfertilized check treatment. Missouri initial N application rates were 50 lbs/ac for the sensor and modelbased treatments and 200 lbs/ac for the N-rich reference. Nebraska initial N application rates were 75 lbs/ac for the sensor and model-based treatments and 250 lbs/ac for the N-rich reference. North Dakota initial N application rates were 0 lbs/ac for the sensor and model-based treatments and 200 lbs/ac for the N-rich reference. In-season N application was done at V9-V11, depending on location. In-season N application rates for sensor treatments were determined using canopy reflectance data collected from all treatments immediately prior to fertilization. Canopy reflectance data was collected using a RapidSCAN CS-45 Handheld Crop Sensor (Holland Scientific, Lincoln, NE) (Figure 3). Two rows per plot were scanned and averaged to generate a value for that plot. The normalized difference red edge index (NDRE) was used to generate a sufficiency index (SI).

$$NDRE = \frac{R_{NIR} - R_{RED EDGE}}{R_{NIR} + R_{RED EDGE}}$$
(1)

where

 R_{NIR} = near-infrared reflectance (780 nm) $R_{RED EDGE}$ = red edge reflectance (730 nm)

 $SI = \frac{NDRE \text{ of sensor based treatment}}{NDRE \text{ of } N \text{ rich reference}}$

The SI was then used in the modified algorithm by Holland and Schepers (2010, modified 2012) to determine a N application rate. The in-season N application rates for the model treatments were determined using Maize-N: Nitrogen Rate Recommendation for Maize (Version 2008.1.0, Yang, H.S., et al., University of Nebraska – Lincoln, 2008). Model treatments were applied at the same date as the sensor treatments. Nebraska and North Dakota plots were hand harvested and Missouri plots were machine harvested. Harvest population was recorded at all sites and barren counts were taken in Nebraska. The partial factor productivity for N was calculated by dividing yield by total fertilizer N rate. Agronomic efficiency was calculated by taking the difference in yield between the fertilized treatment and the check and dividing by total N application. The data was analyzed using Statistical Analysis System (SAS).

Results and Discussion

In-season N recommendations for the model and sensor treatments are summarized in Table 4. For all sites, in-season N application for model treatments exceeded that of sensor treatments.

Figure 3: RapidSCAN

CS-45 Handheld Crop

(2)

Table 4:	Average	nitrogen	rate in ll	os N/acre	for sensor	and model	treatments a	rranged by	site.
Lable II	11, cr age	mer ogen .			IOI DUMBOI	and mouth	vi cucincino u	II angea og	DICC.

		Sen	sor		Model				
	LDS,Lpop* TRT 3	LDS,Hpop TRT 7	HDS,Lpop TRT 11	HDS,Hpop TRT 15	LDS,Lpop TRT 4	LDS,Hpop TRT 8	HDS,Lpop TRT 12	HDS,Hpop TRT 16	
NE – CC	0	0	0	0	30	12	33	14	
NE – MC	14	14	13	6	74	68	76	70	
MO – RO	47	47	55	53	104	94	106	95	
MO – LT	46	34	34	28	70	64	71	65	
ND – DN	108	59	66	60	182	177	176	173	
ND – VC	39	53	36	42	194	167	183	163	

*LDS=low drought score, HDS=high drought score, Lpop=low population, Hpop=high population

Table 5: Main treatment effects for yield, partial factor productivity of nitrogen and agronomic efficiency arranged by site.

Site	Hybrid	N strategy	Plant population	Hybrid x N strategy	Hybrid x plant population	N strategy x plant population	Hybrid x N strategy x plant population		
Main treatment effects on yield (check, N rich reference, sensor and model treatments included)									
NF – CC	NS*	I NS	NS	I NS	NS	NS .	l NS		
NE - CC	<0.0001	0.0013	NS	NS	NS	NS	NS		
MO - RO	0.0146	NS	NS	NS	NS	NS	NS		
MO IT	0.0140	<0.0001	0.0008	NS	NS	NS	NS		
$\mathbf{NO} = \mathbf{D1}$	0.0004	<0.0001	0.0008	NG	NG	NG	NG		
ND – DN	INS NG	0.0213	IND			INS NG	INS NG		
ND - VC	NS	0.0114	NS	NS	NS	NS	NS		
Partial facto	or productiv	ity of nitrogen	main effects (ir	ncludes N rich	reference, sense	or and model tr	reatments)		
NE – CC	NS	< 0.0001	0.0140	NS	NS	0.0078	NS		
NE - MC	0.0026	< 0.0001	NS	NS	NS	NS	NS		
MO – RO	NS	< 0.0001	NS	NS	NS	NS	NS		
MO – LT	0.0097	< 0.0001	NS	NS	NS	NS	NS		
ND - DN	NS	0.0026	NS	NS	NS	NS	NS		
ND – VC	NS	< 0.0001	NS	NS	NS	NS	NS		
Agronomic	efficiency m	ain effects (inc	ludes N rich re	ference, sensor	and model trea	atments)			
NE – CC	NS	NS	NS	NS	NS	NS	NS		
NE – MC	0.0122	0.0043	NS	NS	NS	NS	NS		
MO – RO	0.0282	NS	NS	NS	NS	NS	NS		
MO – LT	NS	0.0091	NS	NS	NS	NS	NS		
ND - DN	NS	NS	0.0061	NS	0.0400	NS	NS		
ND – VC	NS	NS	NS	NS	NS	NS	NS		
Partial facto	or productiv	ity of nitrogen	main effects (o	nly sensor and	model treatme	nts)			
NE – CC	NS	< 0.0001	0.0147	NS	NS	0.0200	NS		
NE - MC	0.0113	< 0.0001	NS	NS	NS	NS	NS		
MO – RO	NS	0.0005	NS	NS	NS	NS	NS		
MO – LT	0.0168	0.0088	NS	NS	NS	NS	NS		
ND - DN	NS	0.0122	NS	NS	NS	NS	NS		
ND – VC	NS	< 0.0001	NS	NS	NS	NS	NS		
Agronomic efficiency main effects (only sensor and model treatment)									
NE – CC	NS	NS	NS	NS	NS	NS	NS		
NE - MC	0.0327	0.0233	NS	NS	NS	NS	NS		
MO – RO	0.0320	NS	NS	NS	NS	NS	NS		
MO – LT	NS	NS	NS	NS	NS	NS	NS		
ND – DN	NS	NS	0.0333	NS	NS	NS	NS		
ND – VC	NS	NS	NS	NS	NS	NS	NS		
*Actual proba	bility level up	to 0.05, NS indic	ates probability le	evel >0.05.					

Agronomic efficiency was not correlated to N strategy for many of the sites. However, partial factor productivity was correlated with N application strategy for all sites (Table 5). Additionally, the sensor treatment appears to have higher nitrogen use efficiency (NUE) as seen by partial factor productivity (Fig. 4). Treatment mean values for yield, partial factor productivity of N and agronomic efficiency are in Table 6.

Table 6: Treatment means for yield, partial factor productivity of nitrogen and agronomic efficiency arranged by site.

		Nitrogen Partial		Nitrogen Partial				
		Factor	Agronomic		Factor	Agronomic		
Treatment	Yield (bu/ac)	Productivity	Efficiency	Yield (bu/ac)	Productivity	Efficiency		
		NE – CC			NE - MC			
LDS-Lpop-C*	249.8			224.2				
LDS-Lpop-R	236.8	0.9470	-0.05223	221.2	0.9218	-0.01241		
LDS-Lpop-S	250.7	3.3431	0.01216	241.5	2.7682	0.2189		
LDS-Lpop-M	245.0	2.3332	-0.04603	223.5	1.4997	-0.00500		
LDS-Hpop-C	225.2			219.2				
LDS-Hpop-R	245.4	0.9817	0.08103	239.3	0.9969	0.08353		
LDS-Hpop-S	250.6	3.3419	0.3395	232.0	2.6578	0.1483		
LDS-Hpop-M	235.3	2.7050	0.1167	229.4	1.6043	0.07144		
HDS-Lpop-C	241.1			232.8				
HDS-Lpop-R	251.8	1.0072	0.04296	259.8	1.0827	0.1129		
HDS-Lpop-S	250.4	3.3379	0.1239	271.9	3.1325	0.4423		
HDS-Lpop-M	245.9	2.2766	0.04465	259.6	1.7195	0.1781		
HDS-Hpop-C	238.6			231.5				
HDS-Hpop-R	249.1	0.9965	0.04195	257.0	1.0710	0.1063		
HDS-Hpop-S	252.0	3.3596	0.1779	257.3	3.1955	0.3221		
HDS-Hpop-M	235.7	2.6482	-0.03305	255.5	1.7623	0.1655		
		MO – RO			MO – LT			
IDS I non C	197		I	52.1				
LDS-Lpop-C	40.7	0.2000	0.00540	J2.1 07.5	0.2804	0 1812		
LDS-Lpop-K	65.8	1.0225	0.09349	88.8	0.0016	0.1812		
LDS-Lpop-S	05.8 87.3	0.5660	0.2803	00.0	0.9210	0.3882		
LDS-Lpop-M LDS Hpop C	66.3	0.5000	0.2302	20.8	0.7524	0.5107		
I DS-Hpop-C	57.9	0.2312	-0.03352	68.2	0.2726	0 1535		
LDS-Hpop-K	84.5	1 3004	0.2270	68.7	0.8511	0.1993		
LDS-Hpop-S LDS-Hpop-M	45 7	0.3168	-0.1427	75.8	0.6644	0.4032		
HDS-L pop-C	93.2	0.5100	0.1127	70.8	0.0011	0.1032		
HDS-Lpop-C HDS-Lpop-R	98.8	0 3945	0.02225	106.3	0 4248	0 1418		
HDS-Lpop-K	75.1	1.0277	-0.2708	101.0	1,1960	0.3500		
HDS-Lpop-M	76.8	0.4918	-0.1047	97.3	0.8027	0.2180		
HDS-Hpop-C	93.1			47.7				
HDS-Hpop-R	94.6	0.3779	0.006057	87.8	0.3509	0.1603		
HDS-Hpop-S	72.5	1.1032	-0.2300	91.5	1.1793	0.5880		
HDS-Hpop-M	59.8	0.4118	-0.2294	105.9	0.9199	0.5057		
		ND – DN		ND – VC				
	59.0			100.2	1.2 , 0			
LDS-Lpop-C	58.9	0.5207	0.2144	109.3	0.7101	0.1654		
LDS-Lрор-к	107.8	0.5387	0.3144	142.4	0./121	0.1654		
LDS-Lpop-S	04.1	0.0307	0.2349	123.4	2.4881	0.1092		
LDS-Lpop-M LDS Upop C	10.0	0.4550	0.1805	134.1	0.0914	0.1278		
LDS-Hpop-C	03.0	0.4668	0.1299	119.9	0 7802	0.1800		
LDS-Hpop-K	93.4	0.4008	0.1388	137.5	0.7893	0.1899		
LDS-Hpop M	60.2	0.8590	0.3239	116.9	0.7002	-0.01761		
HDS-Lpon-C	54.3	0.5700	0.02020	177.6	0.7002	-0.01701		
HDS-Lpop-C	88.8	0 4439	0 1724	143.8	0 7187	0 1058		
HDS-Lpop-K	85.6	1 3635	0.8126	120.2	2 5831	0.2515		
HDS-Lpop-D	100.2	0.5694	0.2609	150.8	0.8239	0.1541		
HDS-Hnon-C	83.1	0.0074	0.2009	127.5	0.0207	0.1071		
HDS-Hnon-R	81.1	0.4055	-0.01019	145.1	0.7257	0.08840		
HDS-Hpop-S	55.5	0.5550	-0.4115	114.1	2.3592	-0.2877		
HDS-Hpop-M	79.7	0.4610	-0.01959	137.1	0.8408	0.05886		

*LDS = low drought score hybrid, HDS = high drought score hybrid, Lpop = low population, Hpop = high population, C = nitrogen check, R = nitrogen rich reference, S = sensor based nitrogen, M = model based nitrogen

Figure 4: Partial factor productivity of nitrogen by treatment, for all six sites.

Summary

Weather conditions played a large role this year. Water stress masked N treatment effects at some sites which were not fully irrigated. The Nebraska sites experienced a large amount of mineralization, particularly in March, which resulted in all treatments, including the control, having very high available N. Additionally, leaf curling due to drought stress and low populations due to soil crusting likely impacted the sensor readings in North Dakota.

For the future, involving Haishun Yang, developer of the Maize-N model will provide valuable expertise for model treatments. It is also possible that weather data for the growing season up to the application date could be included in the model recommended N rate. Obtaining grain N content for all sites next year would have value as fertilizer recovery efficiency could then be calculated. There is also the prospect of collecting sensor data at other sites where N rate by hybrid experiments are underway. The target N application will be slightly earlier, around V8, in order to be able to conduct a post application sensing prior to corn tasseling at all locations. There is also a possibility to increase uniformity of the experiment across the locations, potentially by using the same type and method of N fertilizer and using the same harvest method. The target N available at pre-plant will also be adjusted. North Dakota locations will increase pre-plant N as necessary to ensure a total of 100 lbs of N is available pre-plant.

Publications

N/A

Financial Support

This project is a joint effort of the International Plant Nutrition Institute, Dupont Pioneer, and the participated educational and research institutions in Missouri, North Dakota and Nebraska. Funding from IPNI provides the graduate student assistantship at the University of Nebraska, and support from Dupont Pioneer provides operating funds to complement indirect support from educational and research institutions.

References

Holland, K. H., Schepers, J. S. (2010). Derivation of a Variable Rate Nitrogen Application Model for In-Season Fertilization of Corn. *Agronomy Journal*, 102(5), 1415-1424.

Setiyono, T. D., Yang, H., Walters, D. T., Dobermann, A., Ferguson, R. B., Roberts, D. F., Lyon, D. J., Dlay, D. E., Cassman, K. G. (2011). Maize-N: A Decision Tool for Nitrogen Management in Maize. *Agronomy Journal*, 130(4), 1276-1283.

Yang, H.S., Setiyono, T. Walters, D. T., Dobermann, A., Cassman, K.G. (2008) Maize-N: Nitrogen Rate Recommendation for Irrigated Maize. *University of Nebraska – Lincoln*.