Annual report for KS-23F (2009 season)

NITROGEN AND PHOSPHORUS FERTILIZATION OF IRRIGATED CORN AND GRAIN SORGHUM

Alan Schlegel

Summary (corn)

Long-term research shows that phosphorus (P) and nitrogen (N) fertilizer must be applied to optimize production of irrigated corn in western Kansas. In 2009, N applied alone increased yields about 60 bu/a, while P applied alone increased yields about 25 bu/a. However, when N and P were applied together, yields were increased up to 150 bu/a. Averaged across the past 9 years, corn yields were increased up to 140 bu/a by N and P fertilization. Application of 120 lb N/a (with P) was sufficient to produce >90% of maximum yield in 2009, which was similar to the 9-year average. Phosphorus increased corn yields in 2009 more than 80 bu/a when applied with at least 120 lb N/a. Application of 80 instead of 40 lb P₂O₅/a increased yields 11 bu/a.

Introduction

This study was initiated in 1961 to determine responses of continuous corn and grain sorghum grown under flood irrigation to N, P, and K fertilization. The study was conducted on a Ulysses silt loam soil with an inherently high K content. No yield benefit to corn from K fertilization was observed in 30 years and soil K levels remained high so the K treatment was discontinued in 1992 and replaced with a higher P rate.

Procedures (corn)

Initial fertilizer treatments in 1961 were N rates of 0, 40, 80, 120, 160, and 200 lb N/a without P and K; with 40 lb P_2O_5/a and zero K; and with 40 lb P_2O_5/a and 40 lb K_2O/a . In 1992, the treatments were changed with the K variable being replaced by a higher rate of P (80 lb P_2O_5/a). All fertilizers were broadcast by hand in the spring and incorporated prior to planting. The soil is a Ulysses silt loam. The corn hybrids were Pioneer 33R93 (2001 and 2002), DeKalb C60-12 (2003), Pioneer 34N45 (2004 and 2005), Pioneer 34N50 (2006), Pioneer 33B54 (2007), Pioneer 34B99 (2008) and DeKalb 61-69 (2009) planted at about 30-32,000 seeds/a in late April or early May. Hail damaged the 2005 and 2002 crops. The corn was irrigated to minimize water stress. Furrow irrigation was used in 2000 and sprinkler irrigation since 2001. The center 2 rows of each plot were machine harvested after physiological maturity. Grain yields were adjusted to 15.5% moisture.

Results (corn)

Corn yields in 2009 were greater than the 9-year average (**Table 1**). Nitrogen alone increased yields 60 bu/a while P alone increased yields 25 bu/a. However, N and P applied together increased corn yields up to 150 bu/a. Only 120 lb N/a with P was required to obtain >90% of maximum yield, which is similar to the 9-year average. Corn yields (averaged across all N rates) were 11 bu/a greater with 80 than with 40 lb P_2O_5/a in 2009 which is greater than the 9-year average.

Summary (sorghum)

Long-term research shows that phosphorus (P) and nitrogen (N) fertilizer must be applied to optimize production of irrigated grain sorghum in western Kansas. In 2009, N and P applied alone increased yields about 45 and 6 bu/a, respectively; while N and P applied together increased yields up to 75 bu/a. Averaged across the past 9 years, sorghum yields were increased up to 65 bu/a by N and P fertilization. Application of 40 lb N/a (with P) was sufficient to produce ~85% of maximum yield in 2009. Application of K has had no effect on sorghum yield throughout the study period.

Introduction

This study was initiated in 1961 to determine responses of continuous grain sorghum grown under flood irrigation to N, P, and K fertilization. The study was conducted on a Ulysses silt loam soil with an inherently high K content. The irrigation system was changed from flood to sprinkler in 2001.

Procedures (sorghum)

Fertilizer treatments initiated in 1961 were N rates of 0, 40, 80, 120, 160, and 200 lb N/a without P and K; with 40 lb P_2O_5/a and zero K; and with 40 lb P_2O_5/a and 40 lb K_2O/a . All fertilizers were broadcast by hand in the spring and incorporated prior to planting. The soil is a Ulysses silt loam. Sorghum (Pioneer 8500/8505 from 1998-2007 and Pioneer 85G46 in 2008-2009) was planted in late May or early June. Irrigation was used to minimize water stress. Furrow irrigation was used through 2000 and sprinkler irrigation since 2001. The center 2 rows of each plot were machine harvested after physiological maturity. Grain yields were adjusted to 12.5% moisture.

Results (sorghum)

Grain sorghum yields in 2009 were similar to the average of the past 9 years (**Table 2**). Nitrogen alone increased yields about 45 bu/a while P alone increased yields only about 5 bu/a, however N and P applied together increased yields up to 75 bu/a. Averaged across the past 9-yr, N and P applied together has increased yields up to 65 bu/a. In 2009, 40 lb N/a (with P) produced about 85% of maximum yields which is about 5% less than the 9-yr average. Sorghum yields were not affected by K fertilization, which has been the case throughout the study period.

Table 1. Effect of N and P fertilization on irrigated corn yield, Tribune, KS, 2001-2009.

N	P_2O_5	2001	2002	2003	2004	2005	2006	2007	2008	2009	Mean
lb/ac	re	-					bu/acre				
0	0	54	39	79	67	49	42	49	36	85	55
0	40	43	43	95	97	60	68	50	57	110	69
0	80	48	44	93	98	51	72	51	52	106	68
40	0	71	47	107	92	63	56	77	62	108	76
40	40	127	69	147	154	101	129	112	105	148	121
40	80	129	76	150	148	100	123	116	104	159	123
80	0	75	53	122	118	75	79	107	78	123	92
80	40	169	81	188	209	141	162	163	129	179	158
80	80	182	84	186	205	147	171	167	139	181	162
120	0	56	50	122	103	66	68	106	65	117	84
120	40	177	78	194	228	162	176	194	136	202	172
120	80	191	85	200	234	170	202	213	151	215	185
160	0	76	50	127	136	83	84	132	84	139	101
160	40	186	80	190	231	170	180	220	150	210	180
160	80	188	85	197	240	172	200	227	146	223	186
200	0	130	67	141	162	109	115	159	99	155	126
200	40	177	79	197	234	169	181	224	152	207	180
200	80	194	95	201	239	191	204	232	157	236	194
ANOVA (P>F)											
Nitrogen		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Linear		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Quadratic		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Phosphorus		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Linear		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Quadratic		0.001	0.007	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
N x P		0.001	0.133	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
MEANS											
Nitrogen, lb/a	0	48	42	89	87	53	61	50	48	100	64
	40	109	64	135	132	88	103	102	91	138	107
	80	142	73	165	178	121	137	146	115	161	137
	120	142	71	172	188	133	149	171	118	178	147
	160	150	71	172	203	142	155	193	127	191	156
	200	167	80	180	212	156	167	205	136	199	167
	LSD _{0.05}	15	8	9	11	10	15	11	9	12	8
$P_2O_{5,}$ lb/a	0	77	51	116	113	74	74	105	71	121	89
	40	147	72	168	192	134	149	160	122	176	147
	80	155	78	171	194	139	162	168	125	187	153
	LSD _{0.05}	10	6	6	8	7	11	8	6	9	6

Ν P_2O_5 K_2O Mean - - - - - -- - Ib/acre - - - - - -- bu/acre - -- - - -ANOVA (P>F) 0.001 0.001 Nitrogen 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Linear 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Quadratic 0.001 0.018 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.004 P-K 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Zero P vs P 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 P vs P-K 0.920 0.121 0.803 0.975 0.619 0.694 0.578 0.992 0.745 0.324 N x P-K 0.058 0.030 0.008 0.022 0.195 0.210 0.965 0.005 0.053 0.010 MEANS Nitrogen 0 lb/a LSD_{0.05} 0 lb/a P₂O₅-K₂O 40- 0 40-40 LSD_{0.05}

Table 2. Effect of N, P, and K fertilizers on irrigated sorghum yields, Tribune, KS, 2001-2009.