Nitrogen and Phosphorus Fertilization of Irrigated Corn

A. Schlegel and H.D. Bond IPNI Project Report (KS-23), 2013 Season

Summary

Long-term research shows that phosphorus (P) and nitrogen (N) fertilizer must be applied to optimize production of irrigated corn in western Kansas. In 2013, N applied alone increased yields 69 bu/a, whereas P applied alone increased yields 21 bu/a. Nitrogen and P applied together increased yields up to 150 bu/a. This is similar to the 10 year average, where N and P fertilization increased corn yields up to 147 bu/a. Application of 120 lb/a N (with P) produced about 92% of maximum yield in 2013, which was similar to the 10-year average. Application of 80 instead of 40 lb P₂O₅/a increased average yields 3 bu/a.

Introduction

This study was initiated in 1961 to determine responses of continuous corn and grain sorghum grown under flood irrigation to N, P, and potassium (K) fertilization. The study is conducted on a Ulysses silt loam soil with an inherently high K content. No yield benefit to corn from K fertilization was observed in 30 years, and soil K levels remained high, so the K treatment was discontinued in 1992 and replaced with a higher P rate.

Procedures

This field study is conducted at the Tribune Unit of the Southwest Research-Extension Center. Fertilizer treatments initiated in 1961 are N rates of 0, 40, 80, 120, 160, and 200 lb/a without P and K; with 40 lb/a P_2O_5 and zero K; and with 40 lb/a P_2O_5 and 40 lb/a K_2O . The treatments were changed in 1992; the K variable was replaced by a higher rate of P (80 lb/a P_2O_5). All fertilizers were broadcast by hand in the spring and incorporated before planting. The soil is a Ulysses silt loam. The corn hybrids [Pioneer 34N45 (2004 and 2005), Pioneer 34N50 (2006), Pioneer 33B54 (2007), Pioneer 34B99 (2008), DeKalb 61-69 (2009), Pioneer 1173H (2010), Pioneer 1151XR (2011), and Pioneer 0832 (2012-2013)] were planted at about 32,000 seeds/a in late April or early May. Hail damaged the 2005 and 2010 crops. The corn is irrigated to minimize water stress. Sprinkler irrigation has been used since 2001. The center two rows of each plot are machine harvested after physiological maturity. Grain yields are adjusted to 15.5% moisture.

Results

Corn yields in 2013 were greater than the 10-year average (Table 1). Nitrogen alone increased yields 69 bu/a, whereas P alone increased yields 21 bu/a. However, N and P applied together increased corn yields up to 150 bu/a. While maximum yield was obtained with the highest N and P rate, 160 lb/a N with 80 lb/a P_2O_5 caused less than a 2% yield reduction. Corn yields in 2013 (averaged across all N rates) were 3 bu/a greater with 80 than with 40 lb/a P_2O_5 , which is less than the 10-year average of 6 bu/a.

Table 1. Effect	of nitrogen a	and phosph	orus ferti	lization of	n irrigated	corn, Trib	une, KS, 20	004-2013.				
N	P_2O_5	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Mean
lb/a -							bu/a -					
0	0	67	49	42	49	36	85	20	92	86	70	60
0	40	97	60	68	50	57	110	21	111	85	80	74
0	80	98	51	72	51	52	106	28	105	94	91	75
40	0	92	63	56	77	62	108	23	114	109	97	80
40	40	154	101	129	112	105	148	67	195	138	125	127
40	80	148	100	123	116	104	159	61	194	135	126	127
80	0	118	75	79	107	78	123	34	136	128	112	99
80	40	209	141	162	163	129	179	85	212	197	170	165
80	80	205	147	171	167	139	181	90	220	194	149	166
120	0	103	66	68	106	65	117	28	119	134	114	92
120	40	228	162	176	194	136	202	90	222	213	204	183
120	80	234	170	202	213	151	215	105	225	211	194	192
160	0	136	83	84	132	84	139	49	157	158	122	114
160	40	231	170	180	220	150	210	95	229	227	199	191
160	80	240	172	200	227	146	223	95	226	239	217	199
200	0	162	109	115	159	99	155	65	179	170	139	135
200	40	234	169	181	224	152	207	97	218	225	198	191
200	80	239	191	204	232	157	236	104	231	260	220	207
ANOVA (P>F)												
Nitrogen		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Linear		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Quadratic		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Phosphorus		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Linear		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Quadratic		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$N \times P$		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Means												
Nitrogen, lb/a	_											
0		87	53	61	50	48	100	23	103	88	80	69
40		132	88	103	102	91	138	50	167	127	116	111
80		178	121	137	146	115	161	70	189	173	143	143
120		188	133	149	171	118	178	74	189	186	171	156
160		203	142	155	193	127	191	80	204	208	179	168
200		212	156	167	205	136	199	89	209	218	186	178
LSD (0.05)		11	10	15	11	9	12	9	13	10	10	8
P ₂ O ₅ lb/a												
0		113	74	74	105	71	121	36	133	131	109	97
40		192	134	149	160	122	176	76	198	181	163	155
80		194	139	162	168	125	187	81	200	189	166	161
LSD (0.05)		8	7	11	8	6	9	7	9	7	7	6

Nitrogen and Phosphorus Fertilization of Irrigated Grain Sorghum

A. Schlegel and H.D. Bond

IPNI Project Report (KS-23), 2013 Season

Summary

Long-term research shows that phosphorus (P) and nitrogen (N) fertilizer must be applied to optimize production of irrigated grain sorghum in western Kansas. In 2013, N applied alone increased yields 57 bu/a, whereas N and P applied together increased yields up to 84 bu/a. Averaged across the past 10 years, N and P fertilization increased sorghum yields up to 70 bu/a. Application of 40 lb/a N (with P) was sufficient to produce about 80% of maximum yield in 2013 which was slightly less than the 10-yr average. Application of potassium (K) has had no effect on sorghum yield throughout the study period.

Introduction

This study was initiated in 1961 to determine responses of continuous grain sorghum grown under flood irrigation to N, P, and K fertilization. The study is conducted on a Ulysses silt loam soil with an inherently high K content. The irrigation system was changed from flood to sprinkler in 2001.

Procedures

This field study is conducted at the Tribune Unit of the Southwest Research-Extension Center. Fertilizer treatments initiated in 1961 are N rates of 0, 40, 80, 120, 160, and 200 lb/a N without P and K; with 40 lb/a P_2O_5 and zero K; and with 40 lb/a P_2O_5 and 40 lb/a K_2O . All fertilizers are broadcast by hand in the spring and incorporated before planting. The soil is a Ulysses silt loam. Sorghum (Pioneer 8500/8505 from 2003–2007, Pioneer 85G46 in 2008–2011, and Pioneer 84G62 in 2012-2013) was planted in late May or early June. Irrigation is used to minimize water stress. Sprinkler irrigation has been used since 2001. The center two rows of each plot are machine harvested after physiological maturity. Grain yields are adjusted to 12.5% moisture.

Results

Grain sorghum yields in 2013 were similar to the 10-year average yields (Table 1). Nitrogen alone increased yields 57 bu/a while P alone increased yields 15 bu/a. However, N and P applied together increased yields up to 84 bu/a. Averaged across the past 10 years, N and P applied together increased yields up to 70 bu/a. In 2013, 40 lb/a N (with P) produced about 78% of maximum yield, which is slightly less than the 10-year average of 85%. Sorghum yields were not affected by K fertilization, which has been the case throughout the study period.

Table 1. Effect of nitrogen, phosphorus, and potassium fertilizers on irrigated grain sorghum yields, Tribune, KS, 2004-2013.

]	Fertilizer Grain sorghum							n sorghum yie	eld				
Ν	P_2O_5	K ₂ O	2004	2005*	2006	2007	2008	2009	2010	2011	2012	2013	Mean
	lb/a bu/a												
0	0	0	57	58	84	80	66	64	51	75	78	62	68
0	40	0	73	53	102	97	60	70	51	83	90	77	77
0	40	40	74	54	95	94	65	76	55	88	93	72	77
40	0	0	60	63	102	123	92	84	66	106	115	94	92
40	40	0	112	84	133	146	111	118	77	121	140	114	117
40	40	40	117	84	130	145	105	109	73	125	132	110	114
80	0	0	73	76	111	138	114	115	73	117	132	102	106
80	40	0	103	81	132	159	128	136	86	140	163	136	128
80	40	40	123	92	142	166	126	108	84	138	161	133	129
120	0	0	66	77	101	138	106	113	70	116	130	100	103
120	40	0	106	95	136	164	131	130	88	145	172	137	132
120	40	40	115	98	139	165	136	136	90	147	175	142	136
160	0	0	86	77	123	146	105	108	74	124	149	117	112
160	40	0	120	106	145	170	138	128	92	152	178	146	139
160	40	40	113	91	128	167	133	140	88	151	174	143	134
200	0	0	100	86	134	154	120	110	78	128	147	119	119
200	40	0	115	108	143	168	137	139	84	141	171	136	135
200	40	40	123	101	143	170	135	129	87	152	175	138	137
ANOVA (P>	>F)												
Nitrogen			0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Linear			0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Ouadratic			0.018	0.005	0.004	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
P-K			0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Zero P vs	Р		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
P vs P-K	-		0.121	0.803	0.578	0.992	0.745	0.324	0.892	0.278	0.826	0.644	0.001
$N \sim P K$			0.022	0.105	0.210	0.952	0.045	0.053	0.022	0.278	0.820	0.044	0.777
			0.022	0.175	0.210	0.705	0.005	0.055	0.22)	0.542	0.100	0.077	0.071
Means													
Nitrogen, lb/	/a												
0			68	55	93	91	64	70	52	82	87	70	74
40			96	77	121	138	103	104	72	117	129	106	108
80			100	83	128	155	123	120	81	132	152	124	121
120			96	90	125	156	124	126	82	136	159	126	123
160			107	92	132	161	125	125	83	142	167	135	129
200			113	98	140	164	131	126	84	141	165	131	130
LSD (0.05	5)		11	10	11	9	7	11	5	8	9	8	5
$P_2 O_5 - K_2 O_1 H$	b/a		**	••	••	,			č	0		0	2
0	0, u		74	73	109	130	101	99	68	111	125	99	100
40.0			105	88	132	151	117	120	80	120	125	124	121
40-0			105	00 97	132	151	117	140	70	122	152	124	121
40-40 LCD (0.05	~		111	0/	150	151	11/ F	110	19	155	152	125	121
LSD (0.05)		/	/	/	6	5	/	4	6	6	5	4

*Note. 2005 yields used only blocks 3, 4, & 5.