K5-23F

PROJECT TITLE: EFFECT OF LONG TERM NITROGEN, PHOSPHORUS, AND POTASSIUM FERTILIZATION OF IRRIGATED CORN AND GRAIN SORGHUM

PROJECT LEADER:

Alan Schlegel Southwest Research-Extension Center Rt.1, Box 148 Tribune, KS 67879

PROJECT LOCATION: West-central Kansas at the Tribune Unit, Southwest Research-Extension Center.

OBJECTIVES:

- 1. Determine the optimum nitrogen rate for irrigated corn and grain sorghum.
- 2. Determine whether phosphorus fertilization is necessary for optimum grain production of irrigated corn and grain sorghum.
- 3. Determine whether potassium fertilization is necessary for optimum grain production of irrigated corn and grain sorghum.

RESULTS:

- 1. Nitrogen fertilization is required for optimum production of irrigated corn and grain sorghum in western Kansas. Maximum corn yields are usually obtained with about 160 lb N/acre and maximum grain sorghum yields obtained with about 100 lb N/acre.
- 2. Phosphorus fertilization increases grain yields of irrigated corn and grain sorghum. A yield response from P fertilizer has been observed for the last 25 years in this long term study. This response has increased with time and this year, the 30th year of the study, corn yields were increased 75 bu/acre and sorghum yields increased 25 bu/acre by P fertilizer.
- 3. Corn and grain sorghum yields are not increased by K additions due to inherently high K content of the soil.

The results of this study can be cited by PPI/FAR.

PROJECT CHANGES:

Several additional objectives are being added to the project. They are to 1.) determine the effect of long term NPK applications on soil chemical properties, 2.) determine the effect of P fertilization on crop utilization of N fertilizer, and 3.) determine the effect of long term N fertilization on nitrate movement.

ECONOMIC ANALYSIS:

Substantially higher grain yields of irrigated corn and grain sorghum can be obtained when both N and P fertilizer are applied than from N alone. In 1990, the increase in yields from 40 lb P_2O_5 /acre were about 75 bu/acre for corn and 25 bu/acre for sorghum when applied with adequate N fertilizer. The economic return from P fertilizer would be about \$165/acre for corn and \$50/acre for sorghum (corn at \$2.20/bu and sorghum at \$2.00/bu).

INTERPRETIVE SUMMARY:

Long term research shows that phosphorus fertilizer must be applied for optimum grain yields of irrigated corn and grain sorghum in western Kansas. In 1990, P fertilizer (40 lb P₂O₅/acre) increased corn yields 75 bu/acre and grain sorghum yields 25 bu/acre when adequate N was also applied. Optimum N rates are about 160 lb N/acre for corn and about 100 lb N/acre for grain sorghum. Potassium fertilizer is not needed for irrigated corn and grain sorghum due to the inherently high K content of the soil.

EFFECT OF NITROGEN, PHOSPHORUS, AND POTASSIUM FERTILIZATION OF IRRIGATED CORN AND GRAIN SORGHUM

Alan Schlegel

This study was initiated in 1961 to determine responses of continuous corn and grain sorghum grown under flood irrigation to nitrogen, phosphorus, and potassium fertilization.

Procedure

Corn and grain sorghum were grown on Ulysses silt loam in adjacent plot areas. Fertilizer treatments were N rates of 0, 40, 80, 120, 160, and 200 lb N acre⁻¹ without P and K; with 40 lb P₂O₅ acre⁻¹ and zero K; and with 40 lb P₂O₅ acre⁻¹ and 40 lb K₂O acre⁻¹. Fertilizers were broadcast by hand on 13 April 1990 for corn and 15 May 1990 for sorghum. Corn (Pioneer 3379) was planted on 2 May, and sorghum (Golden Acres TE Y-75) was planted on 6 June. Rainfall from planting to harvest was 9.21" for corn and 6.52" for sorghum. Both studies were furrow irrigated as needed during the growing season. All plots were machine harvested (16 October for corn and 27 October for sorghum). Grain yields were adjusted to 15.5% moisture for corn and 12.5% for sorghum.

Surface soil samples (0 to 6 inches) were taken after harvest in 1989 in both studies and analyzed for phosphorus (Bray-1) and exchangeable potassium. Grain samples were taken at harvest in 1989 and analyzed for N, P, and K content.

Results

Corn yields in 1990 ranged from 71 to 212 bu acre $^{-1}$ (Tables 1 and 2). Nitrogen applications increased yields for each increment of N up to 160 lb N acre $^{-1}$. Addition of phosphorus (40 lb P₂O₅ acre $^{-1}$) increased corn yields by 52 bu acre $^{-1}$ when averaged across N rates. The benefit from P addition increased with increased N rates. At N rates of 120 lb N acre $^{-1}$ and greater, P increased yields by about 75 bu acre $^{-1}$.

Grain sorghum yields ranged from 66 to 126 bu acre-1 in 1990 (Tables 1 and 3). Grain yields increased with increased N up to 120 lb N acre-1. When averaged across N rates, P increased yields by 17 bu acre-1. Similar to corn, P increased sorghum yields more when N as adequate. Yields were 25 bu acre-1 higher from added P at N rates of 120 lb N and higher.

Potassium applications had no significant effect on corn or sorghum yields in 1990. The plot area is located on a soil inherently high in K, and the effect of K additions has always been negligible.

Grain N content and removal increased with increased N rates

for both corn and sorghum in 1989 (Tables 4 and 5). At optimum N rates, the total amount of N in the grain was about 100 lb N for corn and 50 lb N for sorghum. Grain removal of P was also lower for sorghum than corn reflecting the reduced sorghum yields.

Soil P was in the medium range at 17 ppm when the corn study was initiated. Soil P has been maintained in the medium range with P fertilization (Table 6). However, without fertilizer P, soil P levels decreased about 10 ppm and are now in the low P range. In the sorghum study, initial soil P was 18 ppm and with P fertilization has increased to about 25 ppm. Without fertilizer P, soil P levels have decreased to about 8 ppm.

Conclusions

Grain yields of irrigated corn and grain sorghum are increased by N and P applications but not by K additions. For the 30 years of this study, maximum corn yields have consistently been obtained with N rates of 160 lb N acre⁻¹ and maximum sorghum yields obtained with 80-120 lb N acre⁻¹. The addition of P, averaged over the past 10 years, has increased corn yields by approximately 45 bu acre⁻¹ and grain sorghum yields by 20 bu acre⁻¹ when N rates are 120 lb N acre⁻¹ or greater.

Soil P levels have been maintained with 40 lb P_2O_5 acre⁻¹ with corn and slightly increased with sorghum. Without fertilizer P, soil P levels have declined to the low soil P range. Soil K levels increased with K fertilization, however initial soil K levels were maintained without fertilizer K.

Table 1. Effect of N, P, and K fertilization on grain yield of irrigated corn and grain sorghum, Tribune, KS. 1990.

N		Corn yields 2 ⁰ 5-K ₂ O (lb/a)				<u>Sorghum yie</u> P ₂ O ₅ -K ₂ O (lb/a		
Rate	0-0	40-0	40-40	Mean	0-0	40-0	40-40	Mean
lb/a	mas- 4		en euro curo tinio ácilo cinio 1800.	\$2000 00000 00000 00000 00000 00000 00000 0000	bu/acı	re	was state outle desp claim band out	to educa edizio delle silicia sicilia si
0	71	73	80	75	66	67	67	67
40	94	125	125	115	88	102	97	96
80	124	160	161	149	98	106	120	108
120	120	195	199	171	94	126	122	114
160	118	212	207	179	97	123	123	114
200	130	207	209	182	102	125	126	117
Mean	110	162	163		91	108	109	
LSD _{.0}		troge	1	8				7
0	5 P-1			6				5

Table 2. Effect of nitrogen, phosphorus, and potassium on grain yield of irrigated corn, 1961-1990, Tribune, KS.

N	P ₂ O ₅	K ₂ O						Year					81-	61-
	- 2 - 5	2	81	82	83	84	85	86	87	88	89	90	90	90
														· · · · · · · · · · · · · · · · · · ·
****	lb/a		arças ensas	cyma styte	énte emp	altition access	turco cerco	bu/a	a ¹ -	60issà e359	eres seres	etato tinto	40000 econo 40000	42005- 112007
0	0	0	74	100	91	115	72	107	52	62	82	71	82	70
40	0	0	93	135	110	147	104	130	93	86	106	94	110	108
80	0	0	92	135	104	153	98	138	102	104	118	124	116	123
120	0	0	91	138	112	149	93	132	98	98	111	120	114	125
160	0	0	103	133	119	168	99	144	109	105	122	118	121	132
200	0	0	101	130	112	158	97	149	95	107	121	130	120	133
0	40	0	69	106	105	126	68	112	53	59	96	73	86	72
40	40	0	102	154	124	174	117	161	107	101	134	125	130	119
80	40	0	119	157	133	169	133	165	135	128	164	160	146	143
120	40	0	124	176	124	193	135	194	146	150	170	195	160	158
160	40	0	145	176	133	194	144	200	158	172	180	212	171	167
200	40	0	135	170	134	194	139	170	157	169	182	207	167	165
_	4.0	4.0	70	100	100	120	70	100	58	60	89	80	90	75
0		40	70	109	106	139	79	109		103	131	125	130	119
40	40	40	111	149	136	180	103	162	102			161	147	142
80	40	40	119	156	128	190	119	176	136	128	160			
120		40	125	179	137	201	141	185	145	144	184	199	165	159
160		40	133	164	125	177	142	186	151	161	169	207	160	163
200	40	40	155	154	122	203	129	198	161	169	172	209	168	166

¹ Grain yields adjusted to 15.5% moisture.

Table 3. Effect of nitrogen, phosphorus, and potassium on yield of irrigated grain sorghum, 1961-1990, Tribune, KS.

N	P ₂ O ₅	к ₂ 0	81	82	83	84	85	<u>Year</u> 86	87	88	89	90	81 - 90	61 - 90
##S ###	lb/a	erzo erzo	(EEE) 12	XXV 6233 6033	anno c			- bu,	/a ¹ .	and and the	25 60270 A		CELES CALLES CO. CO.	G009 4988
0 40 80 120 160 200	0 0 0 0 0	0 0 0 0 0	57 76 76 67 74 71	73 114 108 106 105 114	73 71 76 81 79 72	90 97 111 106 100 111	70 90 103 99 99	103 108 115 104 114 101	67 79 83 76 74 84	62 76 93 90 90	37 50 62 57 62 68	66 88 98 94 97 102	71 85 92 88 89 93	72 93 105 103 103 105
0 40 80 120 160 200	40 40 40 40 40 40	0 0 0 0 0	54 73 78 87 83 83	87 120 134 132 128 129	85 95 81 87 85 90	94 117 109 119 129 123	66 116 113 112 124 120	99 137 141 137 149 144	62 103 104 98 101 99	61 105 112 124 130 129	35 75 67 80 79 80	67 102 106 126 123 125	71 104 105 110 113 112	106 113 118 121 121
0 40 80 120 160 200	40 40 40 40 40 40	40 40 40 40 40 40	59 84 83 83 82 88	103 114 129 135 129 131	81 89 87 84 85 85	86 112 118 116 106 121	65 113 120 117 117 118	96 134 146 134 147 140	65 97 103 98 98	62 108 121 129 124 130	41 77 82 79 70 88	67 97 120 122 123 126	73 103 111 110 108 113	74 106 117 120 119 120

 $^{^{1}}$ Grain yields adjusted to 12.5% moisture.

Table 4. Effect of nitrogen, phosphorus, and potassium on grain yield; grain N, P, and K content; and grain removal of N, P, and K of irrigated corn. Tribune, KS, 1989.

Yield N P K N P K	N	P ₂ O ₅	K ₂ 0		Grai	n		Gr	ain Rem	oval .
0 0 0 82 0.95 0.21 0.26 37 8.3 10.3 0 40 0 96 0.91 0.26 0.30 42 11.9 13.7 0 40 40 89 0.88 0.26 0.31 37 11.1 13.0 40 0 0 106 1.06 0.20 0.25 53 10.1 12.3 40 40 0 134 0.98 0.25 0.29 62 15.9 18.3 40 40 40 131 0.98 0.24 0.28 61 15.2 17.7 80 0 0 130 1.19 0.17 0.22 67 9.7 12.2 80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 0 182 1.18 0.22 0.25 91 10.9 13.4 200 40 0 172 1.19 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen ** ** ** ** ** ** ** ** MEANS Nitrogen ** ** ** ** ** ** N* P-K ** ns ns ns ns ** ** ** MEANS Nitrogen 1.52 1.18 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen ** ** ** ns ns ns ns ** ** Loo ** ** ** ** ** ** ** ** ** ** ** ** ** ** **		2 3	<i>ڪ</i>	Yield			K			
0 40 0 96 0.91 0.26 0.30 42 11.9 13.7 0 40 40 89 0.88 0.26 0.31 37 11.1 13.0 40 0 0 106 1.06 0.20 0.25 53 10.1 12.3 40 40 40 134 0.98 0.25 0.29 62 15.9 18.3 40 40 40 131 0.98 0.24 0.28 61 15.2 17.7 80 0 0 130 1.19 0.17 0.22 67 9.7 12.2 80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 0.27 82 17.6 20.3 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 21.3 20.4 40 40 172 1.19 0.22 0.25 97 18.2 20.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 21.3 200 40 124c 1.01d 0.232 0.25 97 18.2 20.4 21.3 200 40 124c 1.01d 0.232b 0.27b 59c 13.7b 16.1b 120 155ab 1.17b 0.21c 0.25c 78b 15.2a 17.8c 120 155ab 1.17b 0.21c 0.25c 78b 15.2a 17.8c 120 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3c 120 0.5 9 0.04 0.013 0.01 6 1.4 1.4 1.4 1.4 1.5 1.5 1.5 17.9c 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3c 12.5 1.5 1.5 1.5 17.9c 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3c 12.5 1.5 1.5 1.5 17.9c 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3c 12.5 1.5 1.5 1.5 1.5 1.5 1.5 17.9c 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3c 12.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	eston egos	-lb/a	data was	bu/a	enco tato cano	\$ 40.00 eccu	6229 6328	essia cesso	lb/	a
0 40 40 89 0.88 0.26 0.31 37 11.1 13.0 40 0 0 106 1.06 0.20 0.25 53 10.1 12.3 40 40 0 134 0.98 0.25 0.29 62 15.9 18.3 40 40 40 131 0.98 0.24 0.28 61 15.2 17.7 80 0 0 0 130 1.19 0.17 0.22 67 9.7 12.2 80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 200 40 0 182 1.18 0.22 0.25 97 18.2 20.4 10.4 0.4 0.7 10.2 1.19 0.20 0.25 97 18.2 20.4 10.4 0.26 100 20.2 21.9 10.4 0.4 0.4 0.5 10.2 10.25 93 16.8 19.7 20.4 0.4 0.5 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2			0							
40 0 0 106 1.06 0.20 0.25 53 10.1 12.3 40 40 0 134 0.98 0.25 0.29 62 15.9 18.3 40 40 40 131 0.98 0.24 0.28 61 15.2 17.7 80 0 0 130 1.19 0.17 0.22 67 9.7 12.2 80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 200 40 0 182 1.18 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen ** ** ** ** ** ** ** ** ** P-K ** ** ns ns ns ns ** ** ** MEANS Nitrogen O										
40 40 0 134 0.98 0.25 0.29 62 15.9 18.3 40 40 40 131 0.98 0.24 0.28 61 15.2 17.7 80 0 0 130 1.19 0.17 0.22 67 9.7 12.2 80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 40 40 182 1.18 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen P-K N* P-K ** ns ns ns ns ** ** MEANS Nitrogen 1b/a 0 89d 0.91e 0.246a 0.29a 39d 10.4c 12.3 40 124c 1.01d 0.232b 0.27b 59c 13.7b 16.11 80 147b 1.12c 0.214c 0.25c 78b 15.2a 17.8c 120 155ab 1.17b 0.212c 0.25cd 85a 15.9a 18.3c 160 157a 1.18ab 0.205c 0.24d 87a 15.5a 17.9c 200 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3c LSD P-K (1b/a) 0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3c 40-40 151a 1.07b 0.236a 0.27a 80a 17.2a 19.3c 40-40 151a 1.07b 0.236a 0.27a 80a 17.2a 19.3c										
## A0										
80 0 0 130 1.19 0.17 0.22 67 9.7 12.2 80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 200 40 0 182 1.18 0.22 0.25 102 19.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen										
80 40 0 164 1.09 0.24 0.27 85 18.3 20.8 80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen ** ** ** ** ** ** ** ** ** ** ** ** **										
80 40 40 160 1.08 0.23 0.27 82 17.6 20.3 120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 200 40 0 182 1.18 0.22 0.25 102 19.4 21.3 200 40 0 182 1.18 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen ** ** ** ** ** ** ** ** P-K ** ** ** ** ** ** N * P-K ** ns ns ns ns ** ** MEANS Nitrogen bu/a ** 1b/a 0 89d 0.91e 0.246a 0.29a 39d 10.4c 12.30 40 124c 1.01d 0.232b 0.27b 59c 13.7b 16.1b 80 147b 1.12c 0.214c 0.25c 78b 15.2a 17.8a 120 155ab 1.17b 0.212c 0.25cd 85a 15.9a 18.3a 160 157a 1.18ab 0.205c 0.24d 87a 15.5a 17.9a 200 LSD 05 P-K (1b/a) 0-0 110b 1.15a 0.188b 0.23b 60b 9.7b 12.0b 40-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 40-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a										
120 0 0 111 1.23 0.18 0.23 65 9.7 11.9 120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 200 40 0 182 1.18 0.22 0.25 102 19.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen ** ** ** ** ** ** ** ** P-K ** ns ns ns ns ** ** ** MEANS Nitrogen Vield N P K N P K ** N* P-K ** ns ns ns ns ** ** MEANS 1b/a bu/a * 1b/a 0 89d 0.91e 0.246a 0.29a 39d 10.4c 12.3c 40 124c 1.01d 0.232b 0.27b 59c 13.7b 16.1b 80 147b 1.12c 0.214c 0.25c 78b 15.2a 17.8a 120 155ab 1.17b 0.212c 0.25cd 85a 15.9a 18.3a 140 157a 1.18ab 0.205c 0.24d 87a 15.5a 17.9a 200 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3a 1.150 0.5 9 0.04 0.013 0.01 6 1.4 1.4 P-K (1b/a) 0-0 110b 1.15a 0.188b 0.23b 60b 9.7b 12.0b 40-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 40-40 154a 1.08b 0.236a 0.27a 78a 16.6a 19.1a										
120 40 0 170 1.13 0.22 0.25 91 17.4 19.7 120 40 40 184 1.14 0.24 0.27 99 20.7 23.3 160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 200 40 0 182 1.18 0.22 0.25 102 19.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen ** ** ** ** ** ** ** ** ** ** ** ** **										
120										
160 0 0 122 1.21 0.17 0.21 69 9.6 12.1 160 40 0 180 1.17 0.24 0.26 100 20.2 21.9 160 40 40 169 1.16 0.21 0.25 93 16.8 19.7 200 0 0 121 1.24 0.19 0.23 71 10.9 13.4 200 40 0 182 1.18 0.22 0.25 102 19.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 ANOVA ANOVA Nitrogen ** ** ** ** ** ** ** ** ** ** ** ** **										
160										
160			0					100	20.2	
200 40 0 182 1.18 0.22 0.25 102 19.4 21.3 200 40 40 172 1.19 0.22 0.25 97 18.2 20.4 ANOVA Nitrogen	160	40	40	169		0.21	0.25	93	16.8	19.7
ANOVA Nitrogen P-K N** N** N** N** N** N** N** N** N** N*	200	0	0	121	1.24	0.19	0.23	71	10.9	13.4
ANOVA Nitrogen	200	40	0		1.18	0.22				
Nitrogen P-K N* NP-K N* NP-K N* NP-K NP-K NP-K NP-K NP-K NP-K NP-K NP-K	200	40	40	172	1.19	0.22	0.25	97	18.2	20.4
P-K **										
MEANS Vield N P K			1							
MEANS Nitrogen Yield N P K N										
Nitrogen Yield N P K N P <t< td=""><td>N</td><td>* P-K</td><td></td><td>**</td><td>ns</td><td>ns</td><td>ns</td><td>**</td><td>**</td><td>**</td></t<>	N	* P-K		**	ns	ns	ns	**	**	**
0 89d 0.91e 0.246a 0.29a 39d 10.4c 12.3c 40 124c 1.01d 0.232b 0.27b 59c 13.7b 16.1k 80 147b 1.12c 0.214c 0.25c 78b 15.2a 17.8a 120 155ab 1.17b 0.212c 0.25cd 85a 15.9a 18.3a 160 157a 1.18ab 0.205c 0.24d 87a 15.5a 17.9a 200 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3a LSD 0.5 9 0.04 0.013 0.01 6 1.4 1.4 P—K (1b/a) 0-0 110b 1.15a 0.188b 0.23b 60b 9.7b 12.0k 40-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 40-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a				หรือได้	N T	ת	TZ.	Νī	מ	TZ
0 89d 0.91e 0.246a 0.29a 39d 10.4c 12.3c 40 124c 1.01d 0.232b 0.27b 59c 13.7b 16.1k 80 147b 1.12c 0.214c 0.25c 78b 15.2a 17.8a 120 155ab 1.17b 0.212c 0.25cd 85a 15.9a 18.3a 160 157a 1.18ab 0.205c 0.24d 87a 15.5a 17.9a 200 158a 1.21a 0.213c 0.24cd 90a 16.1a 18.3a LSD 0.5 9 0.04 0.013 0.01 6 1.4 1.4 P—K (1b/a) 0-0 110b 1.15a 0.188b 0.23b 60b 9.7b 12.0k 40-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 40-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a						<u> </u>		1/4	<u>-</u> lh/a	
40		•			0.91e	•	0.29a		12/4	
80										
120										17.8a
160										18.3a
LSD 05 9 0.04 0.013 0.01 6 1.4 1.4 P-K (1b/a) 0-0 110b 1.15a 0.188b 0.23b 60b 9.7b 12.0b 10-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 10-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a										17.9a
P-K (1b/a) 0-0 110b 1.15a 0.188b 0.23b 60b 9.7b 12.0b 40-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 40-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a							0.24cd	90a	16.1a	18.3a
P-K (lb/a) 0-0 110b 1.15a 0.188b 0.23b 60b 9.7b 12.0b 40-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 40-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a		LSD	.05				0.01	6	1.4	
40-0 154a 1.08b 0.238a 0.27a 80a 17.2a 19.3a 40-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a		(lb/a)) -							
40-40 151a 1.07b 0.236a 0.27a 78a 16.6a 19.1a										12.0b
Tab 7 0 00 0 000 0 01 4 10 10										19.3a
TCD 7 002 0000 001 // 10 10	40 - 4									
LSD .05 / 0.03 0.009 0.01 4 1.0 1.0		LSD .	.05	7	0.03	0.009	0.01	4	1.0	1.0

Table 5. Effect of N, P, and K fertilization on grain yield; grain N, P, and K content; and grain removal of N, P, and K of irrigated grain sorghum. Tribune, KS, 1989.

N	P ₂ O ₅	K_20		Grai	<u> </u>		<u>Gr</u>	<u>ain rer</u>	<u>noval .</u>
	2 3	2	Yield	N	P	K	N	P	K
eres com	-lb/a		bu/a	empo dalay elako 4549	esco	Camario (COST)	#12D 4900	- lb/a	<u> </u>
0	0	0	37	1.03	0.31	0.49	19	5.5	8.7
0	40	0	35	1.07	0.35	0.50	18	6.0	8.5
0	40	40	41	1.09	0.34	0.49	22	6.8	9.7
40	0	0	50	1.15	0.26	0.45		6.4	10.9
40	40	0	75	1.08	0.31	0.43	39	11.6	15.6
40	40	40	77	1.15	0.32	0.46	44	12.1	17.5
80	0	0	62	1.26	0.23	0.47	38	7.1	14.0
80	40	0	67	1.19	0.32	0.46	39	10.5	15.0
80	40	40	82	1.26	0.30	0.46	50	12.2	18.2
120	0	0	57	1.31	0.22	0.46	37	6.2	12.8
120	40	0	80	1.30	0.31	0.49	51	12.1	19.1
120	40	40	79	1.33	0.32	0.49	51	12.7	19.0
160	0	0	62	1.40	0.23	0.45	43	6.9	13.7
160	40	0	79	1.37	0.32	0.49	53 47	12.5 10.4	$18.4 \\ 16.4$
160	40	40	70 60	1.37	0.30	0.49	47 46	8.1	15.5
200	0	0	68	1.39	0.24	0.47 0.49	53	11.9	18.9
200	40	0	80 88	1.36 1.36	0.30 0.31	0.50	58	13.4	21.3
200	40	40	00	1.30	0.51	0.50	50	T.7	21.0
ANOV			. T.	**	**	**	**	**	**
	troger	1	** **		**	ns	**	**	**
P-	к * Р-К			ns	ns	ns	ns	ns	ns
IN	* P-K		ns	ns	112	115	115	115	110
MEAN			Viold	λī	מ	v	N	Ð	ĸ
	ogen /a		<u>Yield</u> bu/a	<u>N</u>				<u>P</u> - lb/a·	
0			38C	1.06e	0.33a	0.49a	20d		
40			67b	1.13d	0.30b	0.45c	37c		14.7b
80			70ab	1.24c	0.29b	0.46b		10.0a	
120			70ab 72ab	1.31b					17.0ab
160			70ab	1.38a	0.28b	0.48a	47ab		16.2ab
200			70ab 79a	1.37ab	0.28b	0.48a	53a		18.6a
	SD.05		11	0.06	0.02	0.02	7	2.0	2.4
	(lb/a))							
0-		•	56b	1.26a	0.25b	0.46b	35b	6.7b	12.6b
40-			69a	1.23a	0.32a	0.48a	42a		15.9a
40-4			73a	1.26a	0.32a	0.48a	45a	11.3a	17.0a
	SD.05		8	0.04	0.01	0.02	5	1.4	1.7

Table 6. Effect of N, P, and K fertilization of irrigated corn and grain sorghum on soil P and soil K levels. Tribune, KS, 1989.

N	P ₂ O ₅	K ₂ 0	Cor	:n	Grain_so	rghum .
	2 3	۷	Bray-1 P	Exch. K	Bray-1 P	Exch. K
420 43D	-lb/a	descar whose	CHINA 60250 60270 63425 CHINA	epope source state could state	- ppm	4000 6000 6000 6000
0	0	0	6	580	9	560
0	40	0	30	610	38	540
0	40	40	31	680	36	600
40	0	0	6	630	9	560
40	40	0	22	610	32	570
40	40	40	24	740	29	600
80	0	0	7	600	6	540
80	40	0	17	630	26	580
80	40	40	15	770	26	610
120	0	0	6	590	6	550
120	40	0	13	680	18	540
120	40	40	16	770	23	590
160	0	0	7	630	8	580
160	40	0	14	680	22	530
160	40	40	13	750	17	600
200	0	0	9	620	8	550
200	40	0	13	700	18	530
200	40	40	13	770	22	590
ANOV						
	trogen	1	**	**	**	ns
P-			**	**	**	* *
N MEAN	* P-K		**	ns	**	ns
Nitr	<u>rogen</u>		Bray-1 P	Exch. K	Bray-1 P	Exch. K
0	o/a N		22a	620b	- ppm 27a	570ab
40			17b	660ab	23b	580ab
80			13c	670a	19c	580a
120			11c	680a	16d	560ab
160			12c	690a	15d	570ab
200			12c	700a	16d	560b
			4	40	3	18
D-K	J ^{SD} .05 (lb/a)		72	- 0	5	2.0
0-			7b	610c	8b	560b
40-			18a	650b	26a	550b
40-4			19a	740a	25a	600a
			3	30	2	13
<u>, , , , , , , , , , , , , , , , , , , </u>	SD _{.05}		J	30	- Control of the Cont	

 $^{^{1}}$ Initial soil P levels were 17 ppm for corn and 18 ppm for sorghum. Initial soil K was 500 ppm or greater for both studies.

CORN AND GRAIN SORGHUM RESPONSE TO TILLAGE, PREPLANT IRRIGATION, AND PHOSPHORUS PLACEMENT

Alan Schlegel

This research was conducted to determine the feasibility of ridge tillage for flood irrigated corn and grain sorghum in western Kansas. Additional objectives were to 1.) determine the benefit from preplant irrigation for ridge and conventional tillage, and 2.) determine whether phosphorus placement was affected by tillage practices.

Procedures

Corn and grain sorghum have been grown continuously since 1988 under conventional and ridge tillage systems. Phosphorus fertilizer has been applied since 1989. Conventional tillage consists of stalk shredding and discing in the fall followed by spring discing and furrowing prior to planting. With ridge tillage, the only operation between harvest and planting is shredding stalks. Tillage (two cultivations) during the growing season was the same for both systems. Preplant irrigation treatments were applied 2 to 4 weeks prior to planting. Inseason irrigations were applied uniformly to all plots when needed. Phosphorus was broadcast and band applied at planting at a rate of 40 lb P_2O_5/a cre along with a zero P check. All plots were machine harvested and grain yields adjusted to 15.5% for corn and 12.5% for sorghum.

Results

Similar corn yields have been obtained with ridge and conventional tillage (Table 1). Preplant irrigation did not significantly increase corn yields. Grain sorghum yields in 1989 were extremely low due to an earlier than normal frost. Sorghum yields in 1990 were not affected by tillage, but were increased slightly by preplant irrigation. Both corn and grain sorghum yields were increased by P fertilization, however, placement had no effect on yields.

Table 1. Effect of tillage, preplant irrigation, and phosphorus placement on grain yield of corn and grain sorghum. Tribune, KS, 1989-1990.

Tillage	Preplant	Phosphorus	C	orn	Sorg	ghum .
	Irrigation	Placement	1989	1990	1989	1990
			asian edito 17770	bu/	acre	existr states (\$155)
Conv	Yes	None	162	148	41	97
		Bdct	170	165	45	100
	37 -	Band	176	167	46 53	106 89
	No	None	163	143	52	
		Bdct	166	163	50 33	100
° -1	37	Band	173	165	33 40	101 99
Ridge	Yes	None	161	140 164	53	107
		Bdct	170 166	154 159	44	107
	NI m	Band	155	141	34	92
	No	None Bdct	133 179	169	38	101
		Band	179	158	59	100
		band	1/2	130	33	100
ANOVA ¹						
Tillag	e		*	ns	ns	ns
Irriga			ns	ns	ns	*
P Plac			**	**	ns	**
Tillaq	e * Irrigati	on	ns	ns	ns	ns
	e * P placem		ns	ns	ns	*
Irriga	tion * P pla	cement	ns	ns	ns	ns
MEANS						
Tillag	re	Conv	169a	159a	47a	99a
		Ridge	164b	155a	47a	100a
		LSD _{.05}	4	4	9	4
Prenla	nt irrigatio	n Yes	168a	157a	49a	102a
rrcpro	iic iii yacic	No	165a	157a	45a	97b
		LSD _{.05}	4	4	9	4
P plac	ement	None	158b	143b	43b	94b
r brac	Outen C	Bdct	170a	165a	51a	102a
		Band	173a	163a	47ab	102a
		LSD _{.05}	6	6	8	3

 $^{^{1}}$ *, ** Significant at the .05 and .01 levels of probability.

EFFECT OF COMPOSTED MANURE AND NITROGEN FERTILIZER ON IRRIGATED GRAIN SORGHUM

Alan Schlegel

This study was initiated in 1987 to determine the fertilizer value of composted manure from a beef feedlot for irrigated grain sorghum production and the effect of annual compost and N fertilizer applications on soil chemical characteristics.

Procedure

Compost and nitrogen fertilizer were applied to the same plot area since 1987. The experimental design was a complete factorial with 5 compost rates (0, 0.9, 1.8, 3.6, and 7.2 ton/a) and 4 N fertilizer rates (0, 55, 110, and 165 lb N/a). All treatments were applied and incorporated prior to planting of grain sorghum. The compost contained approximately 30 lb N and 35 lb P_2O_5 per ton. Irrigations were made as needed during the growing seasons. All plots were machine harvested and grain yields adjusted to 12.5% moisture.

Surface soil samples (0 to 6 inches) were collected after harvest in 1989 and analyzed for phosphorus, potassium, iron, and sodium.

Results

Sorghum yields were increased by compost and N fertilizer applications in all years (Table 1). Compost alone increased grain yields up to 39 bu/acre averaged over 4 years. Grain yields increased by about 5.5 bu/acre for each ton of compost. Nitrogen alone increased yields up 36 bu/acre averaged over 4 years with about 70% of the yield increase obtained with 55 lb N/acre. However, in all years, greater yields were obtained with a combination of compost and N fertilizer than with either alone.

Soil P levels were increased from an initial level of 13 ppm Bray-1 P (medium range) up to 77 ppm P (very high range) after three years of compost applications. Soil K was also increased by compost applications, although K is not limiting on this soil. Sodium levels were increased by compost additions but not to levels detrimental to crop production.

This study shows that compost can be used as a nutrient source by irrigated grain sorghum. A combination of compost and N fertilizer tend to produce greater yields than either do alone. Compost was effective in increasing levels of soil nutrients, especially phosphorus.

Table 1. Effect of compost and N fertilizer applications on grain yield of irrigated grain sorghum, Tribune, KS, 1987-1990.

Compost	Nitrogen	Grain yield						
o and	rate	1987	1988	1989	1990	1987- 1990		
ton/a	lb/a	essión espera estado	wherep exists stately exists consti	- bu/a -	anton page socio dilve	essen essen durin		
0	0	69	58	40	59	57		
	55	72	100	79	78	82		
	110	79	101	82	86	87		
	165	77	113	90	92	93		
0.9	0	69	64	51	66	63		
	55	86	107	86	89	92		
	110	85	111	98	102	99		
	165	78	113	97	106	98		
1.8	0	72	70	58	67	67		
~ O	55	81	112	88	98	94		
	110	90	118	103	107	104		
	165	84	108	96	105	98		
3.6	0	72	87	60	79	75		
J. 0	55	83	118	97	105	101		
	110	86	125	98	102	103		
	165	89	117	107	106	105		
7.2	0	87	108	89	100	96		
/ 6 2	55	95	122	107	111	109		
	110	96	134	110	107	112		
	165	85	127	104	104	105		
T.SD		15	16	12	11	7		
LSD.	05	1.0	<u>.</u> 0	- E	willen Artin	•		
<u>anova</u> 1								
Compost		**	**	**	**	* *		
Nitroge	n	**	**	**	**	**		
Compost	* Nitrogen	ns	ns	*	* *	**		
<u>MEANS</u>								
Compost (ton/a) 0	74c	93d	73d	79d	80d		
	0.9	80bc	99cd	83c	91c	88c		
	1.8	82b	102c	86bc	94bc	91c		
	3.6	83b	112b	91b	98b	96b		
	7.2	91a	123a	102a	106a	105a		
LSD	05	7.5	7.9	6.1	5.6	3.4		
Nitrogen °	(lb/a) 0	74b	78b	60c	74c	71c		
	55	83a	112a	91b	96b	96b		
	110	87a	118a	98a	101ab	101a		
	165	83a	115a	99a	102a	100a		
LSD.		6.7	7.1	5.5	5.0	3.0		

 $^{^{1}\,\}star$, ** Significant at the .05 and .01 levels of probability.

Table 2. Soil chemical concentrations following three years of manure compost and nitrogen fertilizer applications, Tribune, KS, 1989.

Compost	Nitrogen	Bray-1 P	Exch. K	DTPA Fe	Exch. Na
ton/a	lb/a	eddio 47499 6070 6000 6000	ppm -	to cause score specie which desire	emin wase state
0	0	12	690	7	56
	55	10	660	7	53
	110	9	660	6	52
	165	9	630	6	49
0.9	0	16	690	6	57
0.5	55	20	720	7	57
	110	12	690	6	53
	165	12	690	7	55
1 0	0	34	730	7	63
1.8			700	7	64
	55	24			60
	110	19	730	7	
	165	24	680	7	54
3.6	0	32	780	7	65
	55	41	790	7	71
	110	31	770	7	71
	165	31	740	7	59
7.2	0	77	890	8	90
	55	66	880	8	88
	110	64	880	7	84
	165	61	880	7	91
LSD	.05	10	45	1	13
ANOVA1	.03				
Compost		**	**	**	**
Nitroge		**	*	ns	ns
	* Nitrogen	ns	ns	ns	ns
MEANS	W MICLOGEN	110	110	***	110
Compost					
-		10e	660d	6.4c	52d
0	,	15d	700c	6.4C	56cd
	. 9			7.2ab	60bc
	.8	25c	710c		
	.6	34b	770b	6.8bc	66b
7	. 2	67 a	880a	7.4a	88a
	LSD.05	5	23	0.6	7
Nitroge	n			_	
0	lb/a	34a	760a	7.1a	67a
55		32a	750a	6.8a	66a
110		27b	740ab	6.8a	64a
165		27b	730b	6.8a	62a
	LSD.05	4	20	0.5	6
	05	-			

 $^{^{1}}$ *, ** significant at the .05 and 0.01 probability levels.