### **PROJECT REPORT**

Long-Term vs Short Term Effects of No-Till

2002 & 2003 & 2004

January, 2005

Prepared by Hilary Hunter Guy Lafond William May Judy McKell **Acknowledgement:** This study was made possible with the cooperation of Jim Halford of Vale Farms Ltd, the Indian Head Agricultural Research Foundation, Saskatchewan Agriculture Food and Rural Revitalization, Agriculture and Agri-Food Canada, N.M Paterson Co, Taking Charge Greenhouse Gas Best Management Program, and the Potash and Phosphate Institute of Canada.

#### INTRODUCTION

Making changes in farming practises requires commitment, time and resources. Producers are interested in knowing the long-term benefits of these changes especially their economic impact. Most of the research work comparing no-till to conventional-till usually has a relatively short time frame of 2-6 years. This makes it very difficult to assess the long-term agronomic and economic benefits of no-till. In 2001, a unique opportunity presented itself. Jim Halford was able to lease a field adjacent to his long-term 23 year no-till field. The adjacent field had been managed using a conventional crop-fallow cropping system. This opportunity provided us with the ability to quantify the magnitude of the long-term agronomic and economic benefits of direct seeding. A description of the cropping sequences of the two adjacent fields is given in Table 1.

The close proximity of the two contrasting fields allowed the opportunity to answer more questions regarding the long-term effects of direct seeding and continuous cropping on overall crop production. The number of studies was expanded in 2003 to try and answer some of those questions. Each study listed below is being conducted on each one of the two fields.

The first study continues from 2002 using the same plots and treatments except that canola was seeded in 2003 instead of spring wheat. The study evaluates the effects of P placement (side-band vs seed-placed) and different rates of N.

The next two studies looks at the overall productivity of the major lentil types with and without fungicides and the effects of starter nitrogen.

The third study looks at the response of wheat and field pea to different levels of phosphorus fertilizer.

The fourth study looks at the response of canary seed, oat and flax to different rates of fertilizer nitrogen using urea in a mid-row banded situation. These crops tend to be less responsive to N fertilizer than spring wheat or canola.

The fifth study looks at alternate N management strategies in spring wheat. We are comparing putting 33% or 100% of the urea fertilizer down at seeding time vs using liquid (67% or 100%) in a surface dribble application at either the 1, 3 or 5 leaf stage.

| Year          | Long-Term No-Till Field                                       | Year      | Short-Term No-Till Field      |
|---------------|---------------------------------------------------------------|-----------|-------------------------------|
| 1978-<br>1983 | No-Till Annual Cropping                                       | 1984-1998 | Conventional Tillage          |
| 1984-90       | Brome Grass Seed Production<br>for 6 years and 2 years of hay |           | Wheat/Fallow System           |
| 1991          | Chemical fallow                                               | 1999      | Summerfallow                  |
| 1992          | Spring wheat                                                  | 2000      | Barley - Conventional Tillage |
| 1993          | Canola                                                        | 2001      | Canola (zero-till)            |
| 1994          | Spring wheat                                                  | 2002      | Spring Wheat (zero-till)      |
| 1995          | Canola                                                        | 2003      | Field Pea (zero-till)         |
| 1996          | Spring wheat                                                  |           |                               |
| 1997          | Canola                                                        |           |                               |
| 1998          | Spring wheat                                                  |           |                               |
| 1999          | Lentil                                                        |           |                               |
| 2000          | Spring wheat                                                  |           |                               |
| 2001          | Canola                                                        |           |                               |
| 2002          | Spring wheat                                                  |           |                               |
| 2003          | Field pea                                                     |           |                               |

Table 1. Cropping histories of long-term and short term fields used in this study.

### **2002 FIELD STUDY RESULTS**

### **OBJECTIVE:**

To determine the relative productivity of two adjacent fields with different cropping and tillage histories by comparing response of wheat to different rates of nitrogen and placement of phosphorus.

### **MATERIALS AND METHODS:**

Two adjacent fields with very contrasting field histories in terms of tillage and crop rotations were used to compare the response of wheat to different rates of nitrogen and different placements of phosphorus. All fertilizer nitrogen (urea) was side-banded using rates of 0, 30, 60, 90 and 120 kg N /ha. One rate of mono-ammonium phosphate (23 kg/ha of P2O5) was used and either seed-placed or side-banded at time of seeding. When side-banded, it was placed with the urea nitrogen at 2.5 cm to the side and 7.5 cm below the seed. Refer to Table 2 for other pertinent information. The plots were 12' x 35', approximately 39 m<sup>2</sup>. Plant and head counts were done on one meter of row in each plot and reported on a per square meter basis. Leaf nitrogen and phosphorus content was determined by collecting flag leaves at random throughout the plot after heading was complete, air drying them at  $30^{\circ}$ C , grinding and sending them for analysis for total N and P determination. Grain yield was determined by harvesting the entire plot and grain protein was done by keeping a sub-sample of 500 g from each plot and then having the protein concentration determined using a commercial infra-red analyser at the N.M. Paterson grain elevator in Indian Head on each plot sub-sample.

| Variable             | Long-Term No-Till Field                                               | Two Year No-Till Field                                                                                                  |  |
|----------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Crop Variety         | CDC Teal                                                              | CDC Teal                                                                                                                |  |
| Seeding Date         | May 28 <sup>th</sup> , 2002                                           | May 28 <sup>th</sup> , 2002                                                                                             |  |
| Harvest Date         | September 16 <sup>th</sup> , 2002                                     | September 16 <sup>th</sup> , 2002                                                                                       |  |
| Herbicide Use        |                                                                       |                                                                                                                         |  |
| Pre-Seeding Burnoff  | May 24 <sup>th</sup> , 2002 Round-Up at 1.0 li/acre                   | May 24 <sup>th</sup> , 2002 Round-Up at 1.0 li/acre                                                                     |  |
| In-Crop Herbicide    | Buctril M (1 li/ha) + 0.2l/ac<br>MCPA Ester - June 24 <sup>th</sup>   | Buctril M (1 li/ha) + 0.2l/ac<br>MCPA Ester - June 24 <sup>th</sup> and<br>Horizon 0.095 li/ac - July 5 <sup>th</sup> . |  |
| Pre-Harvest Round-Up | September 6 <sup>th</sup> Round-Up at 1.0<br>li/acre (applied by air) | September 4 <sup>th</sup> Round-Up at 1.0<br>li/acre (applied by ground<br>asplicator)                                  |  |

### Table 2. Pertinent Agronomic Information for 2002.

| Seeding Implement                                                                         | ConservaPak Seeder on 12"<br>spacing | ConservaPak Seeder on 12"<br>spacing |
|-------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| Soil Test NO3-N (kg/ha)<br>0-30cm                                                         | 55                                   | 41                                   |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                                        | 60                                   | 25                                   |
| Soil Test K (kg/ha)<br>0-30cm                                                             | 895                                  | 1200                                 |
| Soil Test SO4-S (kg/ha)<br>0-30 cm                                                        | 73                                   | 69                                   |
| Soil pH                                                                                   | 7.9                                  | 8.0                                  |
| Salinity Rating                                                                           | Non-saline                           | Non-saline                           |
| Target N levels for 42 bus/ac<br>assuming average growing season<br>precipitation (kg/ha) | 39 - 50                              | 50 - 63                              |
| Soil Texture                                                                              | Clay loam                            | Clay loam                            |

### **RESULTS AND DISCUSSION**

The results of the field study are presented in Tables 3, 4 and 5. The results clearly demonstrate the long term beneficial effects of continuous and diversified cropping when combined with conservation tillage. It is clear that adoption of these practises could lead to reduced input in terms of fertility or more innovative soil fertility practices and better grain quality as demonstrated by the higher grain protein values for the long-term zero tillage land. It also exemplifies the importance of maintaining the productivity of the land through proper management.

The results also show that placing the phosphorus with the nitrogen in a single band below and to the side of the seed does not alter the response to nitrogen. It is also apparent that placing the phosphorus with the seed is similar to placing it to the side and below the seed.

Above average growing conditions were observed for 2002. The grade of the wheat is estimated as a CW#2.

| Factor       | Levels       | Plan | ts / m <sup>2</sup> | Heads / m <sup>2</sup> |       | Flag Leaf % N |        | Flag Leaf<br>% P |        |
|--------------|--------------|------|---------------------|------------------------|-------|---------------|--------|------------------|--------|
|              |              | L-T  | S-T                 | L-T                    | S-T   | L-T           | S-T    | L-T              | S-T    |
| P-Placement  | Seed-Placed  | 415  | 366                 | 497                    | 561   | 3.97          | 3.46   | 0.28             | 0.25   |
|              | Side-Band    | 448  | 392                 | 634                    | 583   | 3.95          | 3.48   | 0.28             | 0.25   |
|              | s.e.         | 18   | 9                   | 18                     | 24    | 0.02          | 0.03   | 0.001            | 0.003  |
|              | p-level      | ns   | 0.07                | 0.0001                 | ns    | ns            | ns     | ns               | ns     |
|              |              |      |                     |                        |       |               |        |                  |        |
| N-Rate kg/ha | 0            | 437  | 395                 | 520                    | 658   | 3.64          | 2.96   | 0.27             | 0.24   |
|              | 30           | 423  | 425                 | 562                    | 639   | 3.86          | 3.04   | 0.28             | 0.23   |
|              | 60           | 430  | 389                 | 578                    | 514   | 3.96          | 3.51   | 0.28             | 0.25   |
|              | 90           | 443  | 342                 | 600                    | 511   | 4.13          | 3.79   | 0.29             | 0.26   |
|              | 120          | 423  | 342                 | 569                    | 536   | 4.19          | 4.04   | 0.29             | 0.26   |
|              | s.e.         | 28   | 15                  | 29                     | 38    | 0.04          | 0.05   | 0.036            | 0.004  |
|              | p-level      | ns   | 0.004               | ns                     | 0.02  | 0.0001        | 0.0001 | 0.002            | 0.004  |
|              | Linear       | ns   | 0.0009              | ns                     | 0.007 | 0.001         | 0.0001 | 0.0001           | 0.0003 |
|              | Quadratic    | ns   | ns                  | ns                     | ns    | ns            | ns     | ns               | ns     |
|              | N x P inter. | ns   | ns                  | ns                     | ns    | ns            | ns     | ns               | ns     |

Table 3. The effects of nitrogen rates and phosphorus placement on selected variables under long-term (L-T) and short-term no-till (S-T) conditions in 2002.

Factor Levels **Grain Protein % Grain Yield Grain Yield** kg/ha bus/acre L-T S-T L-T S-T L-T S-T 11.8 **P** Placement Seed-Placed 13.9 3095 2572 46.4 38.6 13.9 Side-Band 11.7 3247 2630 48.7 39.4 0.09 0.08 99 79 1.5 1.2 s.e. p-level ns ns ns ns ns ns 10.9 2842 N rate (kg-N/ha) 0 13.3 1748 42.6 26.2 30 44.8 32.9 13.7 11.0 2988 2200 60 14.0 11.6 3272 2679 49.1 40.2 90 14.2 12.3 47.9 3436 3197 51.5 14.4 13.1 120 3318 3181 49.8 47.7 0.14 0.13 157 125 2.3 1.9 s.e. 0.0003 0.0001 0.0001 0.0001 p-level ns ns 0.001 0.0001 0.0001 0.0001 Linear 0.011 0.011 Quadratic 0.005 ns ns ns ns ns N x P inter. ns ns ns ns ns ns

Table 4. The effects of nitrogen rates and phosphorus placement on selected variables under long-term (L-T)and short-term notill (S-T) conditions in 2002.

| Treatment | N Rate  | Yield  | Protein | Gross               | N Fert cost         | N Margin | Other Var. &        | Net (\$/A) |
|-----------|---------|--------|---------|---------------------|---------------------|----------|---------------------|------------|
|           | (kg/ha) | (bu/A) | (%)     | (\$/A) <sup>1</sup> | (\$/A) <sup>2</sup> | (\$/A)   | OH costs            |            |
|           |         |        |         |                     |                     |          | (\$/A) <sup>3</sup> |            |
| LT - ZT   | 0       | 42.6   | 13.3    | \$169.55            | \$0.00              | \$169.55 | \$114.53            | \$55.02    |
|           | 30      | 44.8   | 13.7    | \$183.68            | \$7.29              | \$176.39 | \$114.53            | \$61.86    |
|           | 60      | 49.1   | 14.0    | \$205.73            | \$14.58             | \$191.15 | \$114.53            | \$76.62    |
|           | 90      | 51.5   | 14.2    | \$219.91            | \$21.87             | \$198.04 | \$114.53            | \$83.51    |
|           | 120     | 49.8   | 14.4    | \$216.63            | \$29.16             | \$187.47 | \$114.53            | \$72.94    |
|           |         |        |         |                     |                     |          |                     |            |
| ST - ZT   | 0       | 26.2   | 10.9    | \$87.77             | \$0.00              | \$87.77  | \$114.53            | (\$26.76)  |
|           | 30      | 32.9   | 11      | \$112.52            | \$7.29              | \$105.23 | \$114.53            | (\$9.30)   |
|           | 60      | 40.2   | 11.6    | \$141.50            | \$14.58             | \$126.92 | \$114.53            | \$12.39    |
|           | 90      | 47.9   | 12.3    | \$175.79            | \$21.87             | \$153.92 | \$114.53            | \$39.39    |
|           | 120     | 47.7   | 13.1    | \$186.51            | \$29.16             | \$157.35 | \$114.53            | \$42.82    |

Table 5. Economic analysis of nitrogen rate response study as a function of zero tillage management.

1 Gross return = grain yield \* price with protein premium – (freight + handling [1.47/bu])

2 Fertilizer cost =\$277/mt urea (\$0.273/lb N)

3 Variable and overhead costs, except for N fertilizer, according to SAF costs of production for direct seeded spring wheat Black soil zone

### 2003 Field Study Results

# Study #1: The effects of phosphorus placement and rate of nitrogen on the grain yield of canola under a long-term and a short-term zero tillage field history.

The results obtained in 2003 follow the same pattern as in 2002 except that the low yields of 2003 resulted in overall net losses. Over the two years of the study the net returns from the long-term no-till field were impressive considering that this is a class 5 soil.

| Variable                                      | Long-Term No-Till Field                               | Two Year No-Till Field               |  |  |
|-----------------------------------------------|-------------------------------------------------------|--------------------------------------|--|--|
| Crop Variety                                  | InVigor 2663                                          | InVigor 2663                         |  |  |
| Seeding Date                                  | May 14                                                | May 14                               |  |  |
| Harvest Date                                  | Aug 19                                                | Aug 19                               |  |  |
| Swathing Date                                 | Aug 7                                                 | Aug 7                                |  |  |
| Herbicide Use                                 |                                                       |                                      |  |  |
| Pre-Seeding Burnoff                           | Glyphos 900 gai/ha applied on May 8                   |                                      |  |  |
| In-Crop Herbicide                             | Liberty and Select @506 & 15 gai/ha applied on June 5 |                                      |  |  |
| Pre-Harvest Round-Up                          | -                                                     | -                                    |  |  |
| Seeding Implement                             | ConservaPak Seeder on 12"<br>spacing                  | ConservaPak Seeder on 12"<br>spacing |  |  |
| P <sub>2</sub> O <sub>5</sub> kg/ha (12-51-0) | 35                                                    | 35                                   |  |  |
| Soil pH                                       | 7.9                                                   | 8.0                                  |  |  |
| Salinity Rating                               | Non-saline                                            | Non-saline                           |  |  |
| Soil Texture                                  | Clay loam                                             | Clay loam                            |  |  |

| Table 6. Pertinent Agronomic Information for 2003. | Table 6. Pertinent | Agronomic | Information | for 2003. |
|----------------------------------------------------|--------------------|-----------|-------------|-----------|
|----------------------------------------------------|--------------------|-----------|-------------|-----------|

| Table 7. The effects on nitrogen rates in 2002 on the soil residual NO <sub>3</sub> -N (kg/ha) levels from |
|------------------------------------------------------------------------------------------------------------|
| soil samples taken in the fall of 2002.                                                                    |

| History     | N rates (kg/ha) |    |    |    |     |  |
|-------------|-----------------|----|----|----|-----|--|
|             | 0               | 30 | 60 | 90 | 120 |  |
| L-T No-Till | 18              | 21 | 40 | 30 | 42  |  |
| S-T No-Till | 12              | 11 | 11 | 12 | 17  |  |

| Treatment | N Rate  | Yield  | Gross     | N Fert      | N Margin      | Other Var. & | Net (\$/A) |
|-----------|---------|--------|-----------|-------------|---------------|--------------|------------|
|           | (kg/ha) | (bu/A) | $(A)^{1}$ | cost (\$/A) | <b>(\$/A)</b> | OH costs     |            |
|           |         |        |           | 2           |               | $(A)^{3}$    |            |
| LT - ZT   | 0       | 10.7   | \$75.86   | \$0.00      | \$75.86       | \$114.53     | (\$38.67)  |
|           | 30      | 13     | \$92.17   | \$11.60     | \$80.57       | \$114.53     | (\$33.96)  |
|           | 60      | 16.9   | \$119.82  | \$23.20     | \$96.62       | \$114.53     | (\$17.91)  |
|           | 90      | 18.4   | \$130.46  | \$34.76     | \$95.70       | \$114.53     | (\$18.83)  |
|           | 120     | 16.5   | \$116.99  | \$46.40     | \$70.58       | \$114.53     | (\$43.95)  |
|           |         |        |           |             |               |              |            |
| ST - ZT   | 0       | 4.2    | \$29.78   | \$0.00      | \$29.78       | \$114.53     | (\$84.75)  |
|           | 30      | 7.8    | \$55.30   | \$11.60     | \$43.70       | \$114.53     | (\$70.83)  |
|           | 60      | 11.4   | \$80.83   | \$23.20     | \$57.63       | \$114.53     | (\$56.90)  |
|           | 90      | 16.9   | \$119.82  | \$34.76     | \$85.06       | \$114.53     | (\$29.47)  |
|           | 120     | 14.7   | \$104.22  | \$46.40     | \$57.82       | \$114.53     | (\$56.71)  |

Table 8. Agronomic and economic analysis of nitrogen rate response study as a function of zero tillage management in canola in 2003.

1 Gross return = grain yield x price – (freight + handling [1.47/bu])

2 Fertilizer cost =\$440/tonne for urea (\$0.43/lb N)

3 Variable and overhead costs, except for N fertilizer, according to SAF costs of production for direct seeded spring wheat Black soil zone. Canola price \$7.09/bus FOB Indian Head on Sept 7.

# Study #2. The effects of starter N in lentils under long-term and short-term no-till management in 2003.

Producers are interested in the concept of starter nitrogen for pulse crops especially in lentil given their more indeterminant growth habit. Of interest as well is the observation that lentil grown on long-term continuously cropped no-till fields doesn't yield as well as on short term notill fields. There is also concerns that fields with many cycles of lentil may also not yield as well, especially in the thin-black soil zone. Producers are interested in knowing if lentil grown on fields with low nitrogen fertility should be supplemented with fertilizer nitrogen. The present study permitted the investigation of some of those questions. A summary of pertinent agronomic information is given in Table 9.

A summary of the plant populations is given in Table 10. Although there was a slight drop in plant populations with the second rate of N, given that the N was mid-row banded, we feel that this is an artifact. Even though we tried to obtain better than 100 plants per square meter, our final plant population was only about 70 plants per square meter.

There was a significant length of No-Till x N rate interaction for grain yield (Table 11). The nature of the interaction is such that N rate had a greater effect on the short-term than the long-term no-till. Overall the yields tended to be greater on the short-term than the long-term. The N rate response was quadratic in nature.

We also did some spectral measurements with the GreenSeeker<sup>Im</sup> instrument which provides measures of Normalized Difference Vegetation Index (NDVI). NDVI is calculated as the ratios of the infra-red and red bands using the relationship of (Infra-red - Red)/(Infra-red + Red). NDVI is an indirect measurement of the chlorophyll content of the crop canopy which in turn provides an indirect measurement of crop biomass. Chlorophyll absorbs radiation in the red band and reflects the infra-red radiation. This means that the higher the values for NDVI, the more the red band is being absorbed and consequently more chlorophyll is present hence more biomass. Measurements were conducted at two different times (Table 12). On the first date, which corresponded to 10-15 % bloom in the lentil, NDVI values were similar for the short term no-till and long-term no till but on the second date, the values were larger for the long-term no-till. We speculate that by the second seeding date, the larger amount of N being mineralized by the longterm no-till resulted in higher NDVI values. The values increased linearly with N rate on both dates and for both short term and long term no-till. NDVI was able to discriminate the different N rates on both dates.

| Variable                | Long-term No-Till   | Short-term No-Till  |
|-------------------------|---------------------|---------------------|
| Cultivar                | CDC Sedley          | CDC Sedley          |
| Seeding Date            | May 12              | May 12              |
| Seeding Rate            | 125 kg/ha           | 125 kg/ha           |
| Inoculant Rate and Type | Granular @5.6 kg/ha | Granular @5.6 kg/ha |

#### Table 9. Other pertinent agronomic information.

| Harvest Date                                                      | Aug 12                                                                                  | Aug 12                                                                                  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Herbicide Use                                                     |                                                                                         |                                                                                         |
| Pre-Seeding Burnoff                                               | Glyphos 900 gai/ha applied on<br>May 8                                                  | Glyphos 900 gai/ha applied on<br>May 8                                                  |
| In-Crop Herbicide                                                 | Pursuit @16.2 gai/ha on May<br>14 pre-emergence<br>Poast Ultra @214 gai/ha on<br>June 5 | Pursuit @16.2 gai/ha on May<br>14 pre-emergence<br>Poast Ultra @214 gai/ha on<br>June 5 |
| Dessication                                                       | Reglone @ 420 gai/ha on Aug<br>8                                                        | Reglone @ 420 gai/ha on Aug<br>8                                                        |
| Fungicide Use                                                     |                                                                                         |                                                                                         |
| In-Crop                                                           | Headline @100 gai/ha on July<br>4                                                       | Headline @ 100 gai/ha on July<br>4                                                      |
| Seeding Implement                                                 | Edwards Hoe Drill - 8" spacing                                                          | Edwards Hoe Drill - 8"spacing                                                           |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                 | 24.1                                                                                    | 19.5                                                                                    |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                | 32.8                                                                                    | 15.9                                                                                    |
| Potassium Sulfate Applied (kg/ha)                                 | 119 kg/ha on May 7                                                                      | 119 kg/ha on May 7                                                                      |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied (kg/ha) 12-51-00 | 28 kg/ha                                                                                | 28 kg/ha                                                                                |
| Nitrogen form and placement                                       | Urea - Midrow band on 16"<br>centers                                                    | Urea - Midrow band on 16"<br>centers                                                    |
| Crop Stage for NDVI on July 2                                     | 10-15% flower bloom                                                                     | 10-15% flower bloom                                                                     |
| Crop Stage for NDVI on July 17                                    | 30-35% flower bloom                                                                     | 30-35% flower bloom                                                                     |
| Soil pH                                                           | 7.9                                                                                     | 8.0                                                                                     |
| Salinity Rating                                                   | Non-saline                                                                              | Non-saline                                                                              |
| Soil Texture                                                      | Clay loam                                                                               | Clay loam                                                                               |

| Nitrogen-N rate<br>(kg/ha) | Long Term No-Till | Short Term No-Till | Mean |
|----------------------------|-------------------|--------------------|------|
| 0                          | 94                | 70                 | 82   |
| 15                         | 45                | 43                 | 44   |
| 30                         | 70                | 67                 | 68   |
| 60                         | 76                | 76                 | 73   |
| Mean                       | 71                | 62                 |      |

Table 10. The effects of years in no-till and nitrogen rate on plant populations (# m<sup>-2</sup>) for lentil in 2003.

| Nitrogen-N rate<br>(kg/ha)             | Long Term No-Till               | Short Term No-Till              | Mean               |
|----------------------------------------|---------------------------------|---------------------------------|--------------------|
| 0                                      | 1773                            | 2016                            | 1895               |
| 15                                     | 1822                            | 1752                            | 1787               |
| 30                                     | 1879                            | 2226                            | 2053               |
| 60                                     | 1988                            | 2367                            | 2177               |
| Mean                                   | 1865                            | 2091                            |                    |
| cv=6.3%; nrate effect (p=<br>(p=0.03); | =0.008); linear N rate effect ( | (p=0.0001); time in no-till x 1 | n rate interaction |

Table 11. The effects of years in no-till and nitrogen rate on grain yield (kg/ha) for lentil in 2003.

| Nitrogen-N                 | July 2                                                          |                       |       | July 17                               |                                       |        |
|----------------------------|-----------------------------------------------------------------|-----------------------|-------|---------------------------------------|---------------------------------------|--------|
| rate (kg/ha)               | Long<br>Term No-<br>Till                                        | Short Term<br>No-Till | Mean  | Long-term<br>No-till                  | Short-term<br>No-till                 | Mean   |
| 0                          | 0.442                                                           | 0.449                 | 0.446 | 0.713                                 | 0.616                                 | 0.665  |
| 15                         | 0.467                                                           | 0.520                 | 0.493 | 0.732                                 | 0.679                                 | 0.705  |
| 30                         | 0.577                                                           | 0.597                 | 0.587 | 0.710                                 | 0.718                                 | 0.714  |
| 60                         | 0.615                                                           | 0.672                 | 0.644 | 0.758                                 | 0.773                                 | 0.765  |
| Mean                       | 0.525                                                           | 0.560                 |       | 0.728                                 | 0.696                                 |        |
| cv=6.4%; nra<br>(p=0.001). | cv=6.4%; nrate effect (p=0.001); linear nrate effect (p=0.001). |                       |       | cv=8.0%; nrate e<br>nrate effect (p=0 | · · · · · · · · · · · · · · · · · · · | limear |

Table 12. The effects of years in no-till and nitrogen rate on NDVI for lentil in 2003 at two different times.

### Study #3: The effects of long-term and short-term no-till and fungicides on the production of different classes of lentil in 2003.

The study examined three types of green lentils and two types of red lentil. We were interested in determining if there were interactions between lentil type, fungicide application and length of time under no-till. Relevant agronomic information is presented in Table 13.

The recommended target plant population for lentil is 130 plants per meter square. Table 14 lists the treatment effects on plant populations. Although seeding rates were adjusted for seed size and germination percentage, we were not able to obtain the target plant populations. An interaction between cultivar and length of no-till was observed.

The grain yields were affected by time in no-till and cultivars and there was a cultivar x time interaction (Table 15). The interaction was due to smaller differences between the highest and lowest cultivars under long-term no-till than short term no-till. The overall yields were greater under the short-term no-till. The green lentils as a group yield higher than the red lentils. CDC Robin yielded the least under both systems while CDC Vantage yielded the highest under both systems. The large green cultivar CDC Sedley yielded less that the other two green cultivars and its yield was similar to CDC Robin and CDC Recap.

The effect of time in no-till did not have an effect on seed weight (Table 16). The various lentil classes used in the study behave similarly in terms of seed weight, regardless of the length of time in no-till.

| Variable                    | Long-term No-Till                  | Short-term No-Till                    |
|-----------------------------|------------------------------------|---------------------------------------|
| Seeding Date                | May 8                              | May 8                                 |
| Seeding Rate                |                                    |                                       |
| CDC Milestone (small green) | 46 kg/ha                           | 46 kg/ha                              |
| CDC Sedley (large green)    | 125 kg/ha                          | 125 kg/ha                             |
| CDC Vantage (medium green)  | 73 kg/ha                           | 73 kg/ha                              |
| CDC Redcap (large red)      | 54 kg/ha                           | 54 kg/ha                              |
| CDC Robin (small red)       | 34 kg/ha                           | 34 kg/ha                              |
| Inoculant Rate and Type     | Granular @ 5.6 kg/ha with the seed | Granular @ 5.6 kg/ha<br>with the seed |
| Harvest Date                | August 12                          | August 12                             |
| Herbicide Use               |                                    |                                       |
| Pre-Seeding Burnoff         | Glyphos @ 900 gai/ha on<br>May 8   | Glyphos @ 900 gai/ha on<br>May 8      |

#### Table 13. Other pertinent agronomic information.

| In-Crop Herbicide                                                     | Pursuit @ 16.2 gai/ha on May<br>14 pre-emergence<br>Poast Ultra @ 214 gai/ha on<br>June 5 | Pursuit @16.2 gai/ha on<br>May 14 pre-emergence<br>Poast Ultra @ 214 gai/ha<br>on June 5 |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Dessication                                                           | Reglone @ 420 gai/ha on Aug 8                                                             | Reglone @ 420 gai/ha on<br>Aug 8                                                         |
| Fungicide Use                                                         |                                                                                           |                                                                                          |
| In-Crop                                                               | Headline @100 gai/ha on July 4                                                            | Headline @ 100 gai/ha on<br>July 4                                                       |
| Seeding Implement                                                     | Edwards Hoe Drill - 8" spacing                                                            | Edwards Hoe Drill -<br>8"spacing                                                         |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                     | 24.0                                                                                      | 15.2                                                                                     |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                    | 29.7                                                                                      | 11.9                                                                                     |
| Potassium Sulfate Applied (kg/ha)                                     | 119 kg/ha on May 7 broadcast<br>applied                                                   | 119 kg/ha on May 7<br>broadcast applied                                                  |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied (kg/ha) 12-51-<br>00 | 28 kg/ha                                                                                  | 28 kg/ha                                                                                 |
| Soil pH                                                               | 7.9                                                                                       | 8.0                                                                                      |
| Salinity Rating                                                       | Non-saline                                                                                | Non-saline                                                                               |
| Soil Texture                                                          | Clay loam                                                                                 | Clay loam                                                                                |

| Lentil Cultivar | Long-term No-till | Short-term No-Till |
|-----------------|-------------------|--------------------|
| CDC Milestone   | 69                | 100                |
| CDC Sedley      | 68                | 73                 |
| CDC Vantage     | 90                | 80                 |
| CDC Redcap      | 100               | 75                 |
| CDC Robin       | 114               | 101                |
| Mean            | 88                | 86                 |

Table 14. The effects of time under no-till on plant populations  $(\#/^2)$  in 2003.

| able 15. The effects of time under no-tin on gram yield (kg/na) in 2005. |                                                                                                                |                    |        |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|--------|--|
| Lentil Cultivar                                                          | Long-term No-till                                                                                              | Short-term No-Till | Mean   |  |
| CDC Milestone                                                            | 1520                                                                                                           | 2186               | 1853a  |  |
| CDC Sedley                                                               | 1236                                                                                                           | 1870               | 1553bc |  |
| CDC Vantage                                                              | 1599                                                                                                           | 2284               | 1941a  |  |
| CDC Redcap                                                               | 1348                                                                                                           | 1976               | 1661b  |  |
| CDC Robin                                                                | 1147                                                                                                           | 1841               | 1493c  |  |
| Mean                                                                     | 1370b                                                                                                          | 2031a              | 1701   |  |
| , e                                                                      | cv=10.6%; Significant cultivar effect (LSD05=150); time in no-till and cultivar x time in no-till interaction. |                    |        |  |

Table 15. The effects of time under no-till on grain yield (kg/ha) in 2003.

| Lentil Cultivar        | Long-term No-till                               | Short-term No-Till | Mean |  |
|------------------------|-------------------------------------------------|--------------------|------|--|
| CDC Milestone          | 37                                              | 35                 | 36c  |  |
| CDC Sedley             | 74                                              | 74                 | 74a  |  |
| CDC Vantage            | 53                                              | 53                 | 53b  |  |
| CDC Redcap             | 36                                              | 36                 | 36c  |  |
| CDC Robin              | 28                                              | 28                 | 28d  |  |
| Mean                   | 45                                              | 45                 |      |  |
| cv=2.3%; Significant c | v=2.3%; Significant cultivar effect (LSD05=0.9) |                    |      |  |

Table 16. The effects of time under no-till on 1000 seed weight (g) in 2003.

# Study #4: The effects of long-term and short-term no-till on the response of flax, canary seed and oat to nitrogen fertilizer in 2003.

It is well known that crops like flax and canary seed unlike oat are not very responsive to nitrogen fertilizer. The objective of the study was quantify the N response of these three crops on the long-term and short-tem no-till fields. A summary of pertinent agronomic information is provided in Table 17. In order to test out as many rates as possible, 11 rates of N (from 0-100 kg N /ha in 10 kg increments) were employed with only one replicate. NDVI measurements were collected with a Green Seeker<sup>tm</sup> instrument on two separate occasions to try and establish a relationship between NDVI and grain yield. The summary of grain yield results is provided in Table 18. Overall with oat, a significant response to N was observed and the yield was greater for the long-term than the short-term no-till site. As well, we showed very strong relationships between NDVI and grain yield on both seeding dates (Table 19). With flax, the overall response to N was weak and the differences between the two field histories were not obvious like in oat (Table 18). The relationship between NDVI and grain yield was weak on the long-term site and very strong on the short-term site (Table 19). The yield results for canary seed are suspect because of problems with volunteer wheat on the long-term site. Nonetheless, there was a very strong relationship between NDVI and grain yield for the short-term but not the long-term no-till site. Given the data collected to date with the GreenSeeker<sup>tm</sup>, it would appear that this technology has the potential of helping us make better decisions regarding N management on a field scale basis.

| Variable                            | Long-term No-Till                                                      | Short-term No-Till                                                     |
|-------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                     | Fla                                                                    | IX                                                                     |
| Cultivar                            | CDC Bethune                                                            | CDC Bethune                                                            |
| Seeding Date                        | Seeding Date May 12 May                                                |                                                                        |
| Seeding Rate                        | 56 kg/ha                                                               | 56 kg/ha                                                               |
| Harvest Date                        | Sept 3                                                                 | Sept 3                                                                 |
| Herbicide Use                       |                                                                        |                                                                        |
| Pre-Seeding Burnoff                 | Glyphos @ 900 gai/ha on May 8                                          | Glyphos @ 900 gai/ha on May 8                                          |
| In-Crop Herbicide                   | Curtail M @ 660 gai/ha on June 5<br>Poast Ultra @ 214 gai/ha on June 5 | Curtail M @ 660 gai/ha on June 5<br>Poast Ultra @ 214 gai/ha on June 5 |
| Post Harvest                        | -                                                                      | -                                                                      |
| GreenSeeker (July 2) Crop<br>Stage  | Start of flowering                                                     | Start of flowering                                                     |
| GreenSeeker (July 17)<br>Crop Stage | End of flowering                                                       | End of flowering                                                       |
| Seeding Implement                   | Edwards Hoe Drill - 8" spacing                                         | Edwards Hoe Drill - 8"spacing                                          |

#### Table 17. Other pertinent agronomic information.

| Soil Test NO3-N (kg/ha)<br>0-30cm                                    | 14                                                               | 14                                      |  |
|----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|--|
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                   | 22                                                               | 5                                       |  |
| Potassium Sulfate Applied<br>(kg/ha)                                 | 119 kg/ha on May 7 broadcast<br>applied                          | 119 kg/ha on May 7 broadcast<br>applied |  |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied<br>(kg/ha) 12-51-00 | 24 kg/ha seed placed 24 kg/ha seed place                         |                                         |  |
| Soil pH                                                              | 7.9                                                              | 8.0                                     |  |
| Salinity Rating                                                      | Non-saline                                                       | Non-saline                              |  |
| Soil Texture                                                         | Clay loam                                                        | Clay loam                               |  |
|                                                                      | Canaryseed                                                       |                                         |  |
| Cultivar                                                             | CDC Maria                                                        | CDC Maria                               |  |
| Seeding Date                                                         | May 12                                                           | May 12                                  |  |
| Seeding Rate                                                         | 35 kg/ha                                                         | 35 kg/ha                                |  |
| Harvest Date                                                         | Aug 15                                                           | Aug 15                                  |  |
| Herbicide Use                                                        |                                                                  |                                         |  |
| Pre-Seeding Burnoff                                                  | Glyphos @ 900 gai/ha on May<br>8                                 | Glyphos @ 900 gai/ha on May<br>8        |  |
| In-Crop Herbicide                                                    | In-Crop Herbicide Curtail M @660 gai/ha on June Curtail M @660 g |                                         |  |
| Post Harvest                                                         | -                                                                | -                                       |  |
| GreenSeeker (July 2) Crop<br>Stage                                   | 10% of spikes emerged                                            | 10% of spikes emerged                   |  |
| GreenSeeker (July 17)<br>Crop Stage                                  | Early grain fill Early grain fi                                  |                                         |  |
| Seeding Implement                                                    | Edwards Hoe Drill - 8" spacing                                   | Edwards Hoe Drill - 8"spacing           |  |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                    | 16                                                               | 16                                      |  |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                   | 51                                                               | 11                                      |  |

| Potassium Sulfate Applied<br>(kg/ha)                                 | 119 kg/ha on May 7 broadcast119 kg/ha on May 7 broadcastappliedapplied |                                         |
|----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|
| P <sub>2</sub> O <sub>5</sub> fertilizer applied<br>(kg/ha) 12-51-00 | 24 kg/ha seed placed 24 kg/ha seed place                               |                                         |
| Soil pH                                                              | 7.9                                                                    | 8.0                                     |
| Salinity Rating                                                      | Non-saline                                                             | Non-saline                              |
| Soil Texture                                                         | Clay loam                                                              | Clay loam                               |
|                                                                      | OA                                                                     | T                                       |
| Cultivar                                                             | AC Morgan                                                              | AC Morgan                               |
| Seeding Date                                                         | May 12                                                                 | May 12                                  |
| Seeding Rate                                                         | 156 kg/ha                                                              | 156 kg/ha                               |
| Harvest Date                                                         | August 15                                                              | August 15                               |
| Herbicide Use                                                        |                                                                        |                                         |
| Pre-Seeding Burnoff                                                  | Glyphos @ 900 gai/ha on May<br>8                                       | Glyphos @ 900 gai/ha on May<br>8        |
| In-Crop Herbicide                                                    | Curtail M @660 gai/ha on June 5                                        | Curtail M @660 gai/ha on June 5         |
| Post Harvest                                                         | -                                                                      | -                                       |
| GreenSeeker (July 2) Crop<br>Stage                                   | Flag leaf emergence                                                    | Flag leaf emergence                     |
| GreenSeeker (July 17)<br>Crop Stage                                  | Early grain fill                                                       | Early grain fill                        |
| Seeding Implement                                                    | Edwards Hoe Drill - 8" spacing                                         | Edwards Hoe Drill - 8"spacing           |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                    | 15                                                                     | 11                                      |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                   | 42                                                                     | 11                                      |
| Potassium Sulfate Applied<br>(kg/ha)                                 | 119 kg /ha surface broadcast on<br>May 7                               | 119 kg/ha on May 7 broadcast<br>applied |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied<br>(kg/ha) 12-51-00 | 24 kg/ha seed placed                                                   | 24 kg/ha seed placed                    |

| Soil pH         | 7.9        | 8.0        |
|-----------------|------------|------------|
| Salinity Rating | Non-saline | Non-saline |
| Soil Texture    | Clay loam  | Clay loam  |

 Table 18. The effects of nitrogen fertilizer on the yield (kg/ha) of flax, canary seed and oat under long-term and short-term no-till in 2003.

| N rate     | Fl          | ax         | Cana  | aryseed | Oa   | ıt   |
|------------|-------------|------------|-------|---------|------|------|
| kg/ha      | L-T         | S-T        | L-T   | S-T     | L-T  | S-T  |
| 0          | 954         | 657        | 108   | 215     | 2326 | 1726 |
| 10         | 428         | 602        | 210   | 360     | 3230 | 1686 |
| 20         | 978         | 894        | 123   | 708     | 3453 | 2336 |
| 30         | 514         | 818        | 127   | 579     | 3052 | 2759 |
| 40         | 596         | 1008       | 218   | 649     | 3722 | 2967 |
| 50         | 1133        | 1171       | 201   | 855     | 3321 | 3375 |
| 60         | 842         | 1120       | 175   | 785     | 3545 | 3538 |
| 70         | 1190        | 1145       | 223   | 1055    | 3691 | 3935 |
| 80         | 1089        | 1011       | 150   | 852     | 3713 | 3376 |
| 90         | 984         | 1105       | 370   | 831     | 3961 | 3755 |
| 100        | 880         | 1095       | 174   | 922     | 3811 | 4099 |
| Mean       | 872         | 966        | 189** | 710     | 3439 | 3050 |
| **Problems | with volunt | teer wheat |       |         |      |      |

| Field<br>History | NDVI<br>Measurement   | # of<br>Observations | Linear Equation               | R <sup>2</sup><br>(%) | Significance |
|------------------|-----------------------|----------------------|-------------------------------|-----------------------|--------------|
|                  |                       |                      | Flax                          |                       |              |
| Long-Term        | July 2 <sup>nd</sup>  | 11                   | kg/ha = -434 + 3015 [NDVIJy2] | 36                    | 0.049        |
|                  | July 17 <sup>th</sup> | 11                   | kg/ha = -224 + 2236[NDVIJy17] | 42                    | 0.031        |
| Short-Term       | July 2 <sup>nd</sup>  | 11                   | kg/ha = -298 + 3262[NDVIJy2]  | 82                    | 0.0001       |
|                  | July 17 <sup>th</sup> | 11                   | kg/ha = -35 + 2293 [NDVIJy17] | 90                    | 0.0001       |
|                  |                       |                      |                               |                       |              |
|                  |                       | (                    | Canaryseed                    |                       |              |
| Long-Term        | July 2 <sup>nd</sup>  | 11                   | kg/ha = 17.8 + 327[NDVIJy2]   | 17                    | ns           |
|                  | July 17 <sup>th</sup> | 11                   | kg/ha = -6.1 + 362[NDVIJy17]  | 25                    | ns           |
| Short-Term       | July 2 <sup>nd</sup>  | 11                   | kg/ha = -500 + 2090 [NDVIJy2] | 86                    | 0.0001       |
|                  | July 17 <sup>th</sup> | 11                   | kg/ha = -276 + 1838[ndviJy17] | 86                    | 0.0001       |
|                  |                       |                      |                               |                       |              |
|                  |                       |                      | Oat                           |                       |              |
| Long-Term        | July 2 <sup>nd</sup>  | 11                   | kg/ha = 760 + 4206[NDVIJy2]   | 71                    | 0.001        |
|                  | July 17 <sup>th</sup> | 11                   | kg/ha = 763 + 4172[NDVIJy17]  | 83                    | 0.0001       |
| Short-Term       | July 2 <sup>nd</sup>  | 11                   | kg/ha = -683 + 5742[NDVIJy2]  | 90                    | 0.0001       |
|                  | July 17 <sup>th</sup> | 11                   | kg/ha = -397 + 5542[NDVIJy17] | 92                    | 0.0001       |

Table 19. Linear regression equations between grain yield and NDVI measurements in 2003.

# Study #5: The effects of long-term and short-term no-till on the response of field pea and spring wheat phosphorus fertilizer in 2003.

As with the other studies, the proximity of the two fields with very contrasting cropping histories permitted an evaluation on phosphorus response. The effects were investigated in field pea and spring wheat by using different rates of  $P_2O_5$  (ranging from 0 - 45 lbs  $P_2O_5$ /ac in 5 lb increments) and only one replicate for each crop. A summary of the pertinent agronomic information in provided in Table 20. Field history had no effect on phosphorus response in field pea (Table 21) and spring wheat (Table 22). Although the long-term site yielded more than the short term site, there was still no P response. No relationship was found between grain yield and NDVI for both crops reflecting the lack of P response.

| Variable                             | Long-term No-Till                       | Short-term No-Till                      |
|--------------------------------------|-----------------------------------------|-----------------------------------------|
|                                      | Fie                                     | ld Pea                                  |
| Cultivar                             | Eclipse                                 | Eclipse                                 |
| Seeding Date                         | May 12                                  | May 12                                  |
| Seeding Rate                         | 210 kg/ha                               | 210 kg/ha                               |
| Inoculant Rate and Type              | Granular @5.6 kg/ha seed-placed         | Granular @5.6 kg/ha seed-placed         |
| Harvest Date                         | Aug 12                                  | Aug 12                                  |
| Herbicide Use                        |                                         |                                         |
| Pre-Seeding Burnoff                  | Glyphos @900 gai/ha on May 8            | Glyphos @900 gai/ha on May 8            |
| In-Crop Herbicide                    | Odyssey @30 gai/ha on June 5            | Odyssey @30 gai/ha on June 5            |
| Post Harvest                         | Reglone @420 gai/ha on August 3         | Reglone @420 gai/ha on August 3         |
| GreenSeeker (July 2) Crop<br>Stage   | Start of flowering                      | Start of flowering                      |
| GreenSeeker (July 17)<br>Crop Stage  | Flat pod stage                          | Flat pod stage                          |
| Seeding Implement                    | Edwards Hoe Drill - 8" spacing          | Edwards Hoe Drill - 8"spacing           |
| Soil Test NO3-N (kg/ha)<br>0-30cm    | 25                                      | 19                                      |
| Soil Test PO4-P (kg/ha)<br>0-30 cm   | 28                                      | 6                                       |
| Potassium Sulfate Applied<br>(kg/ha) | 119 kg/ha surface broadcast on<br>May 7 | 119 kg/ha surface broadcast on<br>May 7 |
| Soil pH                              | 7.9                                     | 8.0                                     |

Table 20. Other pertinent agronomic information.

| Salinity Rating                       | Non-saline                            | Non-saline                            |
|---------------------------------------|---------------------------------------|---------------------------------------|
| Soil Texture                          | Clay loam                             | Clay loam                             |
|                                       | Spi                                   | ring wheat                            |
| Cultivar                              | Prodigy                               | Prodigy                               |
| Seeding Date                          | May 12                                | May 12                                |
| Seeding Rate                          | 134 kg/ha                             | 134 kg/ha                             |
| Harvest Date                          | Aug 13                                | Aug 13                                |
| Herbicide Use                         |                                       |                                       |
| Pre-Seeding Burnoff                   | Glyphos @ 900 gai/ha                  | Glyphos @ 900 gai/ha                  |
| In-Crop Herbicide                     | Curtail M @ 660 gai/ha on June 5      | Curtail M @ 660 gai/ha on June 5      |
| Post Harvest                          | -                                     | -                                     |
| GreenSeeker (July 2) Crop<br>Stage    | Flag leag 90% emerged                 | Flag leaf 90% emerged                 |
| GreenSeeker (July 17)<br>Crop Stage   | Early grain fill                      | Early grain fill                      |
| Seeding Implement                     | Edwards Hoe Drill - 8" spacing        | Edwards Hoe Drill - 8"spacing         |
| Soil Test NO3-N (kg/ha)<br>0-30cm     | 22                                    | 12                                    |
| Soil Test PO4-P (kg/ha)<br>0-30 cm    | 36                                    | 8                                     |
| Potassium Sulfate Applied<br>(kg/ha)  | 119 kg/ha surface applied on May<br>7 | 119 kg/ha surface applied on May<br>7 |
| Urea -N fertilizer applied<br>(kg/ha) | 90 kg/ha mid-row band at seeding      | 90 kg/ha mid-row band at seeding      |
| Soil pH                               | 7.9                                   | 8.0                                   |
| Salinity Rating                       | Non-saline                            | Non-saline                            |
| Soil Texture                          | Clay loam                             | Clay loam                             |

| $P_2O_5$ rate | Yield ( | kg/ha) | NDVI  | (July 2) | NDVI (J | uly 17) |
|---------------|---------|--------|-------|----------|---------|---------|
| lbs/ac        | L-T     | S-T    | L-T   | S-T      | L-T     | S-T     |
| 0             | 3121    | 2474   | 0.527 | 0.425    | 0.679   | 0.504   |
| 5             | 3201    | 2530   | 0.499 | 0.392    | 0.629   | 0.507   |
| 10            | 3234    | 2520   | 0.533 | 0.411    | 0.682   | 0.574   |
| 15            | 3251    | 2867   | 0.492 | 0.457    | 0.654   | 0.612   |
| 20            | 3351    | 2395   | 0.549 | 0.392    | 0.696   | 0.509   |
| 25            | 3378    | 2619   | 0.544 | 0.421    | 0.684   | 0.590   |
| 30            | 3075    | 2309   | 0.491 | 0.391    | 0.674   | 0.510   |
| 35            | 3223    | 2782   | 0.498 | 0.403    | 0.655   | 0.587   |
| 40            | 3046    | 2494   | 0.506 | 0.390    | 0.607   | 0.529   |
| 45            | 3445    | 2193   | 0.489 | 0.370    | 0.651   | 0.516   |
| P level       | ns      | ns     | ns    | ns       | ns      | ns      |

 Table 21. The effects of phosphorus fertilizer rate on the yield (kg/ha) and NDVI on field pea under long-term and short-term no-till in 2003.

| P <sub>2</sub> O <sub>5</sub> rate | Yield ( | (kg/ha) | NDVI  | (July 2) | NDVI (J | uly 17) |
|------------------------------------|---------|---------|-------|----------|---------|---------|
| lbs/ac                             | L-T     | S-T     | L-T   | S-T      | L-T     | S-T     |
| 0                                  | 2388    | 1637    | 0.698 | 0.691    | 0.739   | 0.704   |
| 5                                  | 2450    | 1945    | 0.744 | 0.647    | 0.777   | 0.629   |
| 10                                 | 2338    | 1723    | 0.779 | 0.663    | 0.785   | 0.660   |
| 15                                 | 2478    | 2000    | 0.754 | 0.661    | 0.784   | 0.703   |
| 20                                 | 2377    | 1715    | 0.754 | 0.682    | 0.777   | 0.690   |
| 25                                 | 2282    | 1991    | 0.750 | 0.701    | 0.779   | 0.688   |
| 30                                 | 2519    | 1990    | 0.756 | 0.665    | 0.765   | 0.698   |
| 35                                 | 2389    | 1900    | 0.765 | 0.710    | 0.777   | 0.710   |
| 40                                 | 2260    | 2035    | 0.760 | 0.710    | 0.775   | 0.702   |
| 45                                 | 2330    | 1647    | 0.800 | 0.661    | 0.767   | 0.690   |
| P level                            | ns      | ns      | ns    | ns       | ns      | ns      |

Table 22. The effects of phosphorus fertilizer rate on the yield (kg/ha) and NDVI on spring wheat under long-term and short-term no-till in 2003.

## Study #6: The effects of long-term and short-term no-till on the response of spring wheat to post emergent applications of liquid nitrogen fertilizer in 2003.

There is a lot of interest in looking at other nitrogen management strategies in order to manage more effectively crop production risks. Currently there is research looking at post emergent applications of liquid nitrogen as a surface band at different times in wheat and canola. The present field study offered the opportunity of testing the concept more fully and determining if the risks of this nitrogen management approach are lower in long-term than short-term no-till fields. A summary of pertinent agronomic information is given in Table 9. The soil test results, averaged over the three samples taken from each replicate of the study, and the amount of N used in the study is given in Table 10. It was assumed that the soil test levels would be very low on the short-term area and higher on the long-term area but the soil test results indicated very little difference in residual N between the two sites. However we used more N on the short-term than the long-term site.

The treatments of the study were chosen to compare putting all the nitrogen (urea) down at seeding time in a mid-row band on 16" spacing vs putting 33% down at seeding in a mid-row band using urea and the remainder at the 1, 3 or 5 leaf stage using liquid UAN as a surface band or putting 100% down after seeding at the 1, 3 or 5 leaf stage as a surface band using liquid UAN. We were interested in overall crop production and grain protein content. We also did some spectral measurements with the GreenSeeker<sup>tm</sup> instrument which provides measures of Normalized Difference Vegetation Index (NDVI). NDVI is calculated as the ratio of the infra-red and red bands using the relationship of (Infra-red - Red)/(Infra-red + Red). NDVI is an indirect measurement of the chlorophyll content of the crop canopy which in turn also provides an indirect measurement of crop biomass. Chlorophyll absorbs radiation in the red band and reflects in the infra-red band. This means that the higher the values for NDVI, the more the red band is being absorbed and consequently more chlorophyll is present hence more biomass. Measurements were conducted at two different times, July 2 (flag leaf just emerged) and on July 17 (early grain fill).

Due to the confounding effects of using different rates of N for each field history, a separate analysis was done for each field history ie long-term no-till vs short-term no-till. The grain yield results are given in Table 11 for both field histories. With the long-term site, an overall response to nitrogen was observed and the highest yield was obtained when all the nitrogen was applied at seeding time. Overall, the post-emergent N applications yielded less than when all the N was applied at seeding time. This was also the case for the short-term no-till field. The difference between the highest yielding treatment and the check was greater for the short-term than the long-term field history. In both cases, applying all the nitrogen fertilizer after seeding as opposed to putting 33% down at seeding and the remainder after seeding yielded less. This would mean that from a risk management perspective, some starter N is required at seeding. The question is how much N should be put down at seeding without minimizing the ability to manage N risk with post-emergent N applications. It has been suggested that a target yield be established based on soil moisture levels in the spring and if weather conditions permit, more N could be applied at a later date.

A different picture emerged for grain protein (Table 12). For the long-term site, an overall N response was observed for grain yield but not for grain protein except when the N was applied at the 1-1.5 leaf stage. In that case, the grain protein was lower than the treatment where all the nitrogen was applied at seeding time. With the short-term no-till site, there was no protein response to N. Although the soil nitrate levels were low in both fields, a different picture emerged for grain

protein reflecting the ability of the long-term field to mineralize more nitrogen during the growing season. The information for the number of spikes per unit area is given in Table 13.

The study also looked at the potential of the GreenSeeker<sup>tm</sup> in helping us to manage nitrogen more effectively. The results for the two sites are given in Tables 14 and 15. This was the first year collecting data with this unit. A summary of correlation coefficients between grain yield and NDVI and grain protein and NDVI is provided in Table 16. The correlations were better for grain yield than grain protein. Overall, the measurements collected on July 2<sup>nd</sup> and 17<sup>th</sup> were able to explain a significant portion of the overall variability in final grain yield (Table 17). Based on these results there is merit in pursuing the investigation of this technology as a way to manage N more effectively at a field scale level.

| Variable                                               | Long-term No-Till                                              | Short-term No-Till                                             |
|--------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| Cultivar                                               | Prodigy                                                        | Prodigy                                                        |
| Seeding Date                                           | May 13                                                         | May 13                                                         |
| Seeding Rate                                           | 134 kg/ha                                                      | 134 kg/ha                                                      |
| Harvest Date                                           | August 13                                                      | August 13                                                      |
| 1-1.5 Leaf Stage                                       | May 27                                                         | May 27                                                         |
| 3-3.5 Leaf Stage                                       | June 5                                                         | June 5                                                         |
| 5-5.5 Leaf Stage                                       | June 16                                                        | June 16                                                        |
| Crop Stage July 2 (First Reading<br>with GeenSeeker)   | Flag leaf emerged and erect                                    | Flag leaf emerged and erect                                    |
| Crop Stage July 17 (Second Reading<br>with GeenSeeker) | early grain fill                                               | early grain fill                                               |
| Herbicide Use                                          |                                                                |                                                                |
| Pre-Seeding Burnoff                                    | Glyphos @900 gai /ha<br>on May 8.                              | Glyphos @900 gai /ha on<br>May 8.                              |
| In-Crop Herbicide                                      | Curtail M @ 660 gai/ha<br>and Horizon @ 69 gai/ha<br>on June 5 | Curtail M @ 660 gai/ha and<br>Horizon @ 69 gai/ha on June<br>5 |
| Post Harvest                                           | -                                                              | -                                                              |
| Seeding Implement                                      | Edwards Hoe Drill - 8"<br>spacing                              | Edwards Hoe Drill -<br>8"spacing                               |

### Table 23. Other pertinent agronomic information.

| Soil Test NO3-N (kg/ha)<br>0-30cm                                 | 16                                      | 10                                      |
|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                | 27                                      | 9                                       |
| Potassium Sulfate Applied (kg/ha)                                 | 119 kg/ha surface<br>broadcast on May 7 | 119 kg/ha surface broadcast<br>on May 7 |
| Total Urea-N Applied (kg/ha)                                      | 65 kg/ha mid-row band at seeding        | 75 kg/ha mid-row band at seeding        |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied (kg/ha) 12-51-00 | 24 kg/ha seed-placed                    | 30 kg/ha seed placed                    |
| Soil pH                                                           | 7.9                                     | 8.0                                     |
| Salinity Rating                                                   | Non-saline                              | Non-saline                              |
| Soil Texture                                                      | Clay loam                               | Clay loam                               |

Table 10. Soil test levels for NO<sub>3</sub>-N and PO<sub>4</sub> (kg/ha) long-term and short-term no-till in 2003 and amount of N used in the study..

| Length of No-Till | NO <sub>3</sub> -N (0-24'')<br>kg/ha | PO <sub>4</sub> (0-6'')<br>kg/ha | Total N Applied<br>kg/ha |
|-------------------|--------------------------------------|----------------------------------|--------------------------|
| Short-term        | 10                                   | 9                                | 83                       |
| Long-term         | 16                                   | 27                               | 70                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                       | -                                                                                                         | Long-Term No-                                                                                                                                                           |                                                                          |                             |                        |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|------------------------|--------------------|
| Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Amount                                                                                                                                                                                                              | Check                                                                                                     |                                                                                                                                                                         | Crop                                                                     | Leaf Sta                    | ıge                    |                    |
| Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of<br>N Applied                                                                                                                                                                                                       |                                                                                                           | At Seeding                                                                                                                                                              | 1-1.5                                                                    | 3-3.5                       | 5-5.5                  | Mean               |
| Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                     | 1078                                                                                                      | -                                                                                                                                                                       | -                                                                        | -                           | -                      | 1078               |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                   | -                                                                                                         | 1875                                                                                                                                                                    | -                                                                        | -                           | -                      | 1875               |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                    | -                                                                                                         | -                                                                                                                                                                       | 1645                                                                     | 1276                        | 1654                   | 1525               |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                     | -                                                                                                         | -                                                                                                                                                                       | 1281                                                                     | 1242                        | 1681                   | 1401               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                  | 1078                                                                                                      | 1875                                                                                                                                                                    | 1463                                                                     | 1259                        | 1668                   |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Check vs Rest: 0.00<br>MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                     | EST of N tr<br>LL Surface<br>LL Surface<br>eatments VS<br>N at the 1-1.<br>N at the 3-3.                  | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000                                                            | s and Starter<br>d Starter N '                                           |                             | : 0.08                 |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N                                                                                                                 | EST of N tr<br>LL Surface<br>LL Surface<br>eatments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000                                                            | s and Starter<br>d Starter N <sup>7</sup><br>1                           |                             | : 0.08                 |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs M<br>Mid-Row Band vs M<br>Mid-Row Band vs M                                                                                            | EST of N tr<br>LL Surface<br>LL Surface<br>eatments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.06                                      | s and Starter<br>d Starter N <sup>7</sup><br>1<br><b>Till</b>            |                             |                        |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                       | EST of N tr<br>LL Surface<br>LL Surface<br>eatments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.06                                      | s and Starter<br>d Starter N <sup>7</sup><br>1<br><b>Till</b>            | Freatments                  |                        | Mean               |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                       | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.06<br>Short-Term No-                    | s and Starter<br>d Starter N <sup>-7</sup><br>1<br>• <b>Till</b><br>Crop | Treatments                  | nge                    | <b>Mean</b><br>647 |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br><b>N</b><br>Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>Mid-Row Band vs N</b><br><b>Mid-Row Band vs N</b>               | EST of N tr<br>LL Surface<br>attents VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.06<br>Short-Term No-                    | s and Starter<br>d Starter N <sup>-7</sup><br>1<br>• <b>Till</b><br>Crop | Leaf Sta<br>3-3.5           | nge                    |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>Placement<br>Check<br>Mid-row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>% Amount</b><br>of<br>N Applied<br>0                            | EST of N tr<br>LL Surface<br>attents VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.06<br>Short-Term No-<br>At Seeding<br>- | s and Starter<br>d Starter N <sup>-7</sup><br>1<br>• <b>Till</b><br>Crop | Leaf Sta<br>3-3.5           | nge                    | 647                |
| CONTRAST I<br>CONTRAST I | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>Mid-Row Band vs N</b><br><b>Mid-Row Band vs N</b><br><b>100</b> | EST of N tr<br>LL Surface<br>attents VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.001<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.06<br>Short-Term No-<br>At Seeding<br>- | s and Starter N <sup>7</sup><br>1<br>Till<br>Crop<br>1-1.5<br>-<br>-     | Leaf Sta<br>3-3.5<br>-<br>- | nge<br>5-5.5<br>-<br>- | 647<br>2202        |

Table 11. The effects of length of no-till and nitrogen management on the grain yield (kg/ha) of spring wheat in 2003.

| cv=8.3%  |                                                                                |
|----------|--------------------------------------------------------------------------------|
| CONTRAST | Check vs Rest: 0.0001                                                          |
| CONTRAST | MidRow band vs REST of N treatments; 0.0001                                    |
| CONTRAST | MidRow band vs ALL Surface Dribble Treatments: 0.0001                          |
| CONTRAST | Mid-Row band vs ALL Surface Dribble Treatments and Starter N: 0.0001           |
| CONTRAST | Surface Dribble Treatments VS Surface Dribble and Starter N Treatments: 0.0001 |
| CONTRAST | Mid-Row Band vs N at the 1-1.5 Leaf Stage: 0.0001                              |
| CONTRAST | Mid-Row Band vs N at the 3-3.5 Leaf Stage: 0.0001                              |
| CONTRAST | Mid-Row Band vs N at the 5-5.5 Leaf Stage: 0.0001                              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                                                        | 0                                                                                                                                                                         |                                                                              |                             |                        |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|------------------------|--------------|
| Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Check                                                                                                    |                                                                                                                                                                           | Crop                                                                         | Leaf Sta                    | age                    |              |
| Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of<br>N Applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          | At Seeding                                                                                                                                                                | 1-1.5                                                                        | 3-3.5                       | 5-5.5                  | Mean         |
| Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.2                                                                                                     | -                                                                                                                                                                         | -                                                                            | -                           | -                      | 13.2         |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                        | 14.2                                                                                                                                                                      | -                                                                            | -                           | -                      | 14.2         |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                        | -                                                                                                                                                                         | 13.4                                                                         | 13.5                        | 14.4                   | 13.8         |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                        | -                                                                                                                                                                         | 13.7                                                                         | 14.0                        | 14.5                   | 14.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.2                                                                                                     | 14.2                                                                                                                                                                      | 13.5                                                                         | 13.8                        | 14.4                   |              |
| CONTRAST (<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check vs Rest: 0.00<br>MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.                  | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns                                                                  | s and Starter                                                                |                             | : ns                   |              |
| CONTRAST (<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns                                                                  | s and Starter<br>d Starter N ´                                               |                             | : ns                   |              |
| CONTRAST IN<br>CONTRAST IN<br>CONTRAST IN<br>CONTRAST IN<br>CONTRAST IN<br>CONTRAST IN<br>CONTRAST IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns<br>5 Leaf Stage: ns                                              | s and Starter<br>d Starter N ´<br><b>Till</b>                                |                             |                        |              |
| CONTRAST (<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MidRow band vs R<br>MidRow band vs Al<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.               | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns<br>5 Leaf Stage: ns                                              | s and Starter<br>d Starter N ´<br><b>Till</b>                                | [reatments                  |                        | Mean         |
| CONTRAST CON | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.               | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns<br>5 Leaf Stage: ns<br>Short-Term No-                            | s and Starter<br>d Starter N<br>Till<br>Crop                                 | Treatments                  | age                    | Mean<br>11.7 |
| CONTRAST (<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>CONTRAST )<br>N<br>Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MidRow band vs R<br>MidRow band vs Al<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns<br>5 Leaf Stage: ns<br>Short-Term No-                            | s and Starter<br>d Starter N<br>Till<br>Crop                                 | Leaf Sta<br>3-3.5           | age                    |              |
| CONTRAST O<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MidRow band vs R<br>MidRow band vs Al<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns<br>5 Leaf Stage: ns<br><b>Short-Term No-</b><br>At Seeding<br>-  | s and Starter<br>d Starter N<br>Till<br>Crop                                 | Leaf Sta<br>3-3.5<br>-      | age<br>5-5.5<br>-      | 11.7         |
| CONTRAST CON | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Shad vs N<br>Mid-Row Shad | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatments<br>Surface Dribble an<br>5 Leaf Stage: 0.02<br>5 Leaf Stage: ns<br>5 Leaf Stage: ns<br>6hort-Term No-<br>At Seeding<br>-<br>12.4 | s and Starter<br>d Starter N <sup>7</sup><br>Till<br>Crop<br>1-1.5<br>-<br>- | Leaf Sta<br>3-3.5<br>-<br>- | age<br>5-5.5<br>-<br>- | 11.7<br>12.4 |

Table 12. The effects of length of no-till and nitrogen management on the grain protein (%) spring wheat in 2003.

| cv=3.4%  |                                                                            |
|----------|----------------------------------------------------------------------------|
| CONTRAST | Check vs Rest: ns                                                          |
| CONTRAST | MidRow band vs REST of N treatments: ns                                    |
| CONTRAST | MidRow band vs ALL Surface Dribble Treatments: ns                          |
| CONTRAST | Mid-Row band vs ALL Surface Dribble Treatments and Starter N:ns            |
| CONTRAST | Surface Dribble Treatments VS Surface Dribble and Starter N Treatments: ns |
| CONTRAST | Mid-Row Band vs N at the 1-1.5 Leaf Stage: 0.07                            |
| CONTRAST | Mid-Row Band vs N at the 3-3.5 Leaf Stage: ns                              |
| CONTRAST | Mid-Row Band vs N at the 5-5.5 Leaf Stage: ns                              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                        | Long-Term No-                                                                                                                                                            | Till                                                                               |                             |                        |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------|------------------------|--------------------|
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Check                                                                                                    | Crop Leaf Stage                                                                                                                                                          |                                                                                    |                             |                        |                    |
| Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of<br>N Applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          | At Seeding                                                                                                                                                               | 1-1.5                                                                              | 3-3.5                       | 5-5.5                  | Mean               |
| Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 280                                                                                                      | -                                                                                                                                                                        | -                                                                                  | -                           | -                      | 280                |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                        | 371                                                                                                                                                                      | -                                                                                  | -                           | -                      | 371                |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                        | -                                                                                                                                                                        | 318                                                                                | 248                         | 294                    | 287                |
| Mid-row<br>band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                        | -                                                                                                                                                                        | 258                                                                                | 293                         | 290                    | 280                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 280                                                                                                      | 371                                                                                                                                                                      | 288                                                                                | 271                         | 292                    |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST S<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Check vs Rest: ns<br>MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.                                                  | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002                                                                                     | s and Starter<br>d Starter N                                                       |                             | : ns                   |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002<br>5 Leaf Stage: 0.000                                                              | s and Starter<br>d Starter N <sup>7</sup><br>4                                     |                             | : ns                   |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.003                                       | s and Starter<br>d Starter N <sup>7</sup><br>4<br>• <b>Till</b>                    |                             |                        |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.003                                       | s and Starter<br>d Starter N <sup>7</sup><br>4<br>• <b>Till</b>                    | [reatments                  |                        | Mean               |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.                | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002<br>5 Leaf Stage: 0.003<br>5 Leaf Stage: 0.003                                       | s and Starter<br>d Starter N <sup>7</sup><br>4<br><b>Till</b><br>Crop              | Treatments                  | age                    | <b>Mean</b><br>208 |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>% Amount</b><br>of<br>N Applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LL Surface<br>ALL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002<br>5 Leaf Stage: 0.003<br>5 Leaf Stage: 0.003                                       | s and Starter<br>d Starter N <sup>7</sup><br>4<br><b>Till</b><br>Crop              | Treatments                  | age                    |                    |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>Placement<br>Check<br>Mid-row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>Mid-Row Band vs N</b><br><b>Mid-Row S</b><br><b>Mid-Row S</b><br><b>Mid-Row S</b><br><b>Mid-Row S</b><br><b>Mid-Row S</b><br><b>Mid-Row S</b><br><b>Mid-R</b> | LL Surface<br>ALL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002<br>5 Leaf Stage: 0.003<br>5 Leaf Stage: 0.003<br>6 hort-Term No-<br>At Seeding<br>- | s and Starter<br>d Starter N <sup>7</sup><br>4<br>•Till<br>Crop<br>1-1.5<br>-      | Leaf Sta<br>3-3.5<br>-      | age<br>5-5.5<br>-      | 208                |
| CONTRAST I<br>CONTRAST I | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>% Amount</b><br>of<br>N Applied<br>0<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LL Surface<br>ALL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.002<br>5 Leaf Stage: 0.003<br>5 Leaf Stage: 0.003<br>6 hort-Term No-<br>At Seeding<br>- | s and Starter<br>d Starter N <sup>-7</sup><br>4<br>Till<br>Crop<br>1-1.5<br>-<br>- | Leaf Sta<br>3-3.5<br>-<br>- | age<br>5-5.5<br>-<br>- | 208<br>361         |

Table 13. The effects of length of no-till and nitrogen management on the number of head per meter square in spring wheat in 2003.

| cv=14.6  |                                                                               |
|----------|-------------------------------------------------------------------------------|
| CONTRAST | Check vs Rest: 0.004                                                          |
| CONTRAST | MidRow band vs REST of N treatments: 0.015                                    |
| CONTRAST | MidRow band vs ALL Surface Dribble Treatments: 0.003                          |
| CONTRAST | Mid-Row band vs ALL Surface Dribble Treatments and Starter N: ns              |
| CONTRAST | Surface Dribble Treatments VS Surface Dribble and Starter N Treatments: 0.019 |
| CONTRAST | Mid-Row Band vs N at the 1-1.5 Leaf Stage: 0.049                              |
| CONTRAST | Mid-Row Band vs N at the 3-3.5 Leaf Stage: 0.009                              |
| CONTRAST | Mid-Row Band vs N at the 5-5.5 Leaf Stage: 0.051                              |

|                                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                          | Long-Term No-                                                                                                                                                            |                                                                |                             |                        |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------|------------------------|----------------------|
| N                                                                                                                                                                                                | % Amount                                                                                                                                                                                                 | Check                                                                                                    |                                                                                                                                                                          | Crop                                                           | Leaf Sta                    | ige                    |                      |
| Placement                                                                                                                                                                                        | of<br>N Applied                                                                                                                                                                                          |                                                                                                          | At Seeding                                                                                                                                                               | 1-1.5                                                          | 3-3.5                       | 5-5.5                  | Mean                 |
| Check                                                                                                                                                                                            | 0                                                                                                                                                                                                        | 0.330                                                                                                    | -                                                                                                                                                                        | -                                                              | -                           | 0.330                  |                      |
| Mid-row<br>band                                                                                                                                                                                  | 100                                                                                                                                                                                                      | -                                                                                                        | 0.652                                                                                                                                                                    | -                                                              | -                           | -                      | 0.652                |
| Mid-row<br>band                                                                                                                                                                                  | 33                                                                                                                                                                                                       | -                                                                                                        | -                                                                                                                                                                        | 0.508                                                          | 0.390                       | 0.554                  | 0.484                |
| Mid-row<br>band                                                                                                                                                                                  | 0                                                                                                                                                                                                        | -                                                                                                        | -                                                                                                                                                                        | 0.480                                                          | 0.411                       | 0.604                  | 0.485                |
|                                                                                                                                                                                                  | Mean                                                                                                                                                                                                     | 0.330                                                                                                    | 0.652                                                                                                                                                                    | 0.474                                                          | 0.401                       | 0.579                  |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST S<br>CONTRAST I                                                                                                                               | Check vs Rest: 0.00<br>MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                        | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.                                   | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000                                                                                     | s and Starter<br>d Starter N 7<br>1                            |                             | : ns                   |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                 | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre                                                                                                                         | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000                                                              | s and Starter<br>d Starter N 7<br>1<br>1                       |                             | : ns                   |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                   | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                               | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.005                                       | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b>          |                             |                        |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                 | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                          | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.               | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.005                                       | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b>          | [reatments                  |                        | Mean                 |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                 | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                          | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.               | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.005<br>5 Leaf Stage: 0.005                                       | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b><br>Crop  | Treatments                  | age                    | <b>Mean</b><br>0.316 |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>Placement                                                                                                    | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N                | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.005<br>5 Leaf Stage: 0.005                                       | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b><br>Crop  | Treatments                  | age                    |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>Placement<br>Check<br>Mid-row                                                                  | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>% Amount</b><br>of<br>N Applied<br>0               | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.005<br>5 Leaf Stage: 0.005<br>6 hort-Term No-<br>At Seeding<br>- | s and Starter N 7<br>1<br>1<br>Till<br>Crop<br>1-1.5<br>-      | Treatments                  | age                    | 0.316                |
| CONTRAST I<br>CONTRAST I | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>% Amount</b><br>of<br><b>N Applied</b><br>0<br>100 | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.005<br>5 Leaf Stage: 0.005<br>6 hort-Term No-<br>At Seeding<br>- | s and Starter N 7<br>1<br>1<br>Till<br>Crop<br>1-1.5<br>-<br>- | Leaf Sta<br>3-3.5<br>-<br>- | nge<br>5-5.5<br>-<br>- | 0.316                |

 Table 14. The effects of length of no-till and nitrogen management on NDVI taken on July 2 in spring wheat in 2003.

| cv=5.8%  |                                                                                |
|----------|--------------------------------------------------------------------------------|
| CONTRAST | Check vs Rest: 0.0001                                                          |
| CONTRAST | MidRow band vs REST of N treatments: 0.0001                                    |
| CONTRAST | MidRow band vs ALL Surface Dribble Treatments: 0.0001                          |
| CONTRAST | Mid-Row band vs ALL Surface Dribble Treatments and Starter N: 0.0001           |
| CONTRAST | Surface Dribble Treatments VS Surface Dribble and Starter N Treatments: 0.0001 |
| CONTRAST | Mid-Row Band vs N at the 1-1.5 Leaf Stage: 0.0001                              |
| CONTRAST | Mid-Row Band vs N at the 3-3.5 Leaf Stage: 0.0001                              |
| CONTRAST | Mid-Row Band vs N at the 5-5.5 Leaf Stage: 0.0001                              |

| N                                                                                                                                                                                                | % Amount                                                                                                                                                                                                 | Check                                                                                                    |                                                                                                                                                                         | Crop                                                                 | Leaf Sta                    | ıge                    |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|------------------------|----------------------|
| Placement                                                                                                                                                                                        | t of<br>N Applied At Seeding 1-1.5 3-3.5                                                                                                                                                                 |                                                                                                          |                                                                                                                                                                         |                                                                      |                             |                        | Mean                 |
| Check                                                                                                                                                                                            | 0                                                                                                                                                                                                        | 0.389                                                                                                    | -                                                                                                                                                                       | -                                                                    | -                           | -                      | 0.389                |
| Mid-row<br>band                                                                                                                                                                                  | 100                                                                                                                                                                                                      | -                                                                                                        | 0.680                                                                                                                                                                   | -                                                                    | -                           | -                      | 0.680                |
| Mid-row<br>band                                                                                                                                                                                  | 33                                                                                                                                                                                                       | -                                                                                                        | -                                                                                                                                                                       | 0.537                                                                | 0.416                       | 0.602                  | 0.518                |
| Mid-row<br>band                                                                                                                                                                                  | 0                                                                                                                                                                                                        | -                                                                                                        | -                                                                                                                                                                       | 0.496                                                                | 0.457                       | 0.626                  | 0.526                |
|                                                                                                                                                                                                  | Mean                                                                                                                                                                                                     | 0.389                                                                                                    | 0.680                                                                                                                                                                   | 0.517                                                                | 0.437                       | 0.614                  |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST S                                                                                                                                             | Check vs Rest: 0.00<br>MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N                                                                             | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS                                                    | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an                                                                                                           | s and Starter<br>d Starter N 7                                       |                             | : ns                   |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                 | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A                                                                                                                                                | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000                                                             | s and Starter<br>d Starter N 7<br>1<br>1                             |                             | : ns                   |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                 | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                                               | EST of N tr<br>LL Surface<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5. | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.014                                      | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b>                |                             |                        |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                 | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                          | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.               | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.014                                      | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b>                | [reatments                  |                        | Mean                 |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                                 | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N                                                          | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.               | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.014<br>Short-Term No-                    | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b><br><b>Crop</b> | Treatments                  | nge                    | <b>Mean</b><br>0.274 |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I                                                                                                   | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N                | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.014<br>Short-Term No-                    | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b><br><b>Crop</b> | Treatments                  | nge                    |                      |
| CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>CONTRAST I<br>Placement<br>Check<br>Mid-row                                                                  | MidRow band vs R<br>MidRow band vs A<br>Mid-Row band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>% Amount</b><br>of<br>N Applied<br>0               | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.014<br>Short-Term No-<br>At Seeding<br>- | s and Starter<br>d Starter N<br>1<br>1<br><b>Till</b><br><b>Crop</b> | Treatments                  | nge                    | 0.274                |
| CONTRAST I<br>CONTRAST I | MidRow band vs R<br>MidRow band vs A<br>Surface Dribble Tre<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br>Mid-Row Band vs N<br><b>% Amount</b><br>of<br><b>N Applied</b><br>0<br>100 | EST of N tr<br>LL Surface<br>atments VS<br>N at the 1-1.<br>N at the 3-3.<br>N at the 5-5.<br>S<br>Check | Dribble Treatments<br>Dribble Treatment<br>Surface Dribble an<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.000<br>5 Leaf Stage: 0.014<br>Short-Term No-<br>At Seeding<br>- | s and Starter N 7<br>1<br>Till<br>Crop<br>1-1.5<br>-<br>-            | Leaf Sta<br>3-3.5<br>-<br>- | nge<br>5-5.5<br>-<br>- | 0.274<br>0.658       |

 Table 15. The effects of length of no-till and nitrogen management on NDVI taken on July 17

 in spring wheat in 2003.

| cv=8.1%  |                                                                                |
|----------|--------------------------------------------------------------------------------|
| CONTRAST | Check vs Rest: 0.0001                                                          |
| CONTRAST | MidRow band vs REST of N treatments: 0.0001                                    |
| CONTRAST | MidRow band vs ALL Surface Dribble Treatments: 0.0001                          |
| CONTRAST | Mid-Row band vs ALL Surface Dribble Treatments and Starter N: 0.0001           |
| CONTRAST | Surface Dribble Treatments VS Surface Dribble and Starter N Treatments: 0.0001 |
| CONTRAST | Mid-Row Band vs N at the 1-1.5 Leaf Stage: 0.0001                              |
| CONTRAST | Mid-Row Band vs N at the 3-3.5 Leaf Stage: 0.0001                              |
| CONTRAST | Mid-Row Band vs N at the 5-5.5 Leaf Stage: 0.0001                              |

 Table 16. Correlation coefficients between NDVI values and grain protein and grain yield for both field histories and combined.

| GreenSeeker                | Grain Yield |              |                |    | (           | Grain Prote | in      |
|----------------------------|-------------|--------------|----------------|----|-------------|-------------|---------|
|                            | All         | L-T N-T      | S-T N-T        |    | All         | L-T N-T     | S-T N-T |
| # of Observations          | 48          | 24           | 24             |    | 48          | 24          | 24      |
| NDVI-July2nd               | 0.87**      | 0.87**       | 0.88**         |    | 0.09ns      | 0.64**      | 0.11ns  |
| NDVI-July 17 <sup>th</sup> | 0.85**      | 0.90**       | 0.94**         |    | 0.44*       | 0.68**      | 0.14ns  |
| **, * and ns refers to s   | significant | at the 1% le | evel, 5% level | la | nd not sign | ificant     |         |

Table 17. Linear regression equations between grain yield and NDVI measurements on two separate dates in 2003.

| Field<br>History | NDVI<br>Measurement   | # of<br>Observations | Linear Equation                | R <sup>2</sup><br>(%) | Significance |
|------------------|-----------------------|----------------------|--------------------------------|-----------------------|--------------|
| Long-Term        | July 2nd              | 24                   | kg/ha = 270 + 2463 [NDVIJy2]   | 76                    | ***          |
|                  | July 17 <sup>th</sup> | 24                   | kg/ha = 61+2676 [NDVIJy17]     | 81                    | ***          |
|                  |                       |                      |                                |                       |              |
| Short-Term       | July 2nd              | 24                   | kg/ha = -229 + 3447 [NDVIJy2]  | 78                    | ***          |
|                  | July 17 <sup>th</sup> | 24                   | kg/ha = -285 + 3933 [NDVIJy17] | 89                    | ***          |
|                  |                       |                      |                                |                       |              |
| Combined         | July 2nd              | 48                   | kg/ha = 5.3 + 2997 [NDVIJy2]   | 75                    | ***          |
|                  | July 17 <sup>th</sup> | 48                   | kg/ha = 15 + 3003 [ndviJy17]   | 73                    | ***          |

### **2004 Field Study Results**

# Study #1: The effects of phosphorus placement and rate of nitrogen on the grain yield of spring wheat under a long-term and a short-term zero tillage field history.

A description of some of the pertinent agronomic information is provided in Table 1. The effects of P placement and N rates on the variables measured are provided in Table 2 and 3. P placement had no effect on plant numbers, head numbers, flag leaf N or P content, grain yield and grain protein. N rate reduced plant numbers linearly under short-term no-till (STNT) but not under long-term no-till (LTNT). There was a nitrogen by P placement interaction for flag leaf N content under STNT. P placement had no effect on grain protein and grain yield. N rate had an effect on grain N and grain yield but no interactions. Yields were higher for the STNT because frost had less of an effect but the grain protein levels were lower for the STNT than the LTNT (Table 8).

A summary of the fall residual NO3-N values is provided in Table 4. Overall, residual N levels were slightly higher for the LTNT than the STNT site but well within acceptable levels.

A economic evaluation using margin analysis is provided in Table 5. The economic performance was poorer due to the effects of the frost being harder on the LTNT than the STNT site. The effects on grade are provided in Table 7 which was included in the analysis.

| Variable                            | Long-Term No-Till Field                                                                                                                                 | Three Year No-Till Field                                                                                                                                |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crop Variety                        | AC Abbey                                                                                                                                                | AC Abbey                                                                                                                                                |
| Seeding Date                        | May 5                                                                                                                                                   | May 5                                                                                                                                                   |
| Harvest Date                        | Sept 7                                                                                                                                                  | Sept 7                                                                                                                                                  |
| Herbicide Use                       |                                                                                                                                                         |                                                                                                                                                         |
| Pre-Seeding Burnoff                 | Glyphos @ 667 gai/                                                                                                                                      | ha applied on May 7                                                                                                                                     |
| In-Crop Herbicide                   | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.5 gai/ha on<br>June 16<br>Achieve @ 197.7 gai/ha on June<br>16<br>Attain @ 142.3 gai/ha on June 16 | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.5 gai/ha on<br>June 16<br>Achieve @ 197.7 gai/ha on June<br>16<br>Attain @ 142.3 gai/ha on June 16 |
| Pre-Harvest Round-Up                | Glyphos @ 890 gai/ha on Aug 25                                                                                                                          | Glyphos @ 890 gai/ha on Aug 25                                                                                                                          |
| Seeding Implement                   | ConservaPak Seeder on 12"<br>spacing                                                                                                                    | ConservaPak Seeder on 12"<br>spacing                                                                                                                    |
| Greenseeker Crop Stage (June<br>15) | 3.5 - 4 leaves                                                                                                                                          | 3.4 - 3.8 leaves                                                                                                                                        |

#### Table 1. Pertinent Agronomic Information for 2004.

| Greenseeker Crop Stage (June<br>23)           | 4 - 4.5 leaves            | 4 leaves                    |
|-----------------------------------------------|---------------------------|-----------------------------|
| Greenseeker Crop Stage (June<br>30)           | 5.5 - 5.7 leaves          | 5.3 leaves                  |
| Greenseeker Crop Stage (July 7)               | 6 - 7 leaves / early flag | 6 - 7 leaves / early flag   |
| Greenseeker Crop Stage (July<br>14)           | head out of booth         | late booth / head emergence |
| Greenseeker Crop Stage (July 30)              | late milk stage           | late milk stage             |
| P <sub>2</sub> O <sub>5</sub> kg/ha (11-52-0) | 65                        | 65                          |
| Soil pH                                       | 7.9                       | 8.0                         |
| Salinity Rating                               | Non-saline                | Non-saline                  |
| Soil Texture                                  | Clay loam                 | Clay loam                   |

| Factor            | Levels          | Plan | Plants / m <sup>2</sup> Heads / m <sup>2</sup> Flag Le |        |      |        | g Leaf<br>% P |        |        |
|-------------------|-----------------|------|--------------------------------------------------------|--------|------|--------|---------------|--------|--------|
|                   |                 | L-T  | S-T                                                    | L-T    | S-T  | L-T    | S-T           | L-T    | S-T    |
| P-<br>Placement   | Seed-<br>Placed | 372  | 417                                                    | 499    | 493  | 3.56   | 3.33          | 0.25   | 0.22   |
|                   | Side-<br>Band   | 398  | 389                                                    | 506    | 495  | 3.61   | 3.39          | 0.26   | 0.23   |
|                   | s.e.            | 13.7 | 13.1                                                   | 7.6    | 19.1 | 0.04   | 0.05          | 0.003  | 0.002  |
|                   | p-level         | ns   | ns                                                     | ns     | ns   | ns     | ns            | ns     | ns     |
|                   |                 |      |                                                        |        |      |        |               |        |        |
| N-Rate<br>(kg/ha) | 0               | 396  | 444                                                    | 465    | 496  | 3.05   | 2.77          | 0.24   | 0.21   |
|                   | 30              | 398  | 425                                                    | 471    | 512  | 3.13   | 2.68          | 0.25   | 0.22   |
|                   | 60              | 385  | 392                                                    | 511    | 430  | 3.58   | 3.29          | 0.26   | 0.22   |
|                   | 90              | 368  | 391                                                    | 530    | 494  | 3.94   | 3.92          | 0.26   | 0.24   |
|                   | 120             | 379  | 362                                                    | 535    | 536  | 4.22   | 4.14          | 0.27   | 0.24   |
|                   | s.e.            | 7.9  | 21.2                                                   | 20.8   | 25.7 | 0.3    | 0.4           | 0.007  | 0.008  |
|                   | p-level         | ns   | ns                                                     | 0.0006 | ns   | 0.0001 | 0.0001        | 0.0148 | 0.0011 |
|                   | linear          | ns   | 0.006                                                  | ns     | ns   | 0.0001 | 0.0001        | 0.0007 | 0.0001 |
|                   | quadra<br>tic   | ns   | ns                                                     | ns     | ns   | ns     | 0.02          | ns     | ns     |
|                   | N X P           | ns   | ns                                                     | ns     | ns   | ns     | 0.0223        | ns     | ns     |

 Table 2. The effects of nitrogen rates and phosphorus placement on selected variables under long-term (L-T) and short-term no-till (S-T) conditions in 2004.

| Factor               | Levels          | Grain l | Protein % | Grain Yield<br>kg/ha |        | Grain Yield<br>bus/acre |        |
|----------------------|-----------------|---------|-----------|----------------------|--------|-------------------------|--------|
|                      |                 | L-T     | S-T       | L-T                  | S-T    | L-T                     | S-T    |
| P Placement          | Seed-<br>Placed | 13.3    | 12.7      | 1531                 | 1639   | 23                      | 25     |
|                      | Side-<br>Band   | 13.2    | 12.5      | 1624                 | 1652   | 24                      | 25     |
|                      | s.e.            | 0.0     | 0.0       | 58.0                 | 57.3   | 0.9                     | 0.9    |
|                      | p-level         | ns      | ns        | ns                   | ns     | ns                      | ns     |
|                      |                 |         |           |                      |        |                         |        |
| N rate (kg-<br>N/ha) | 0               | 12.9    | 11.8      | 1103                 | 1102   | 17                      | 17     |
|                      | 30              | 13.2    | 12.0      | 1032                 | 1062   | 15                      | 16     |
|                      | 60              | 13.0    | 12.1      | 1530                 | 1568   | 23                      | 24     |
|                      | 90              | 13.4    | 12.8      | 2011                 | 2162   | 30                      | 32     |
|                      | 120             | 13.9    | 13.7      | 2211                 | 2334   | 33                      | 35     |
|                      | s.e.            | 0.2     | 0.5       | 333.7                | 364.8  | 5.0                     | 5.5    |
|                      | p-level         | 0.0032  | 0.0001    | 0.0001               | 0.0001 | 0.0001                  | 0.0001 |
|                      | linear          | 0.0006  | 0.0001    | 0.0001               | 0.0001 | 0.0001                  | 0.0001 |
|                      | quadratic       | ns      | 0.0064    | ns                   | ns     | ns                      | ns     |
|                      | N X P           | ns      | ns        | ns                   | ns     | ns                      | ns     |

Table 3. The effects of nitrogen rates and phosphorus placement on selected variables under long-term (L-T) and short-term no-till (S-T) conditions in 2004.

Table 4. The effects on nitrogen rates in 2004 on the soil residual NO<sub>3</sub>-N (kg/ha) levels from soil samples taken in the fall of 2004.

| History | N rates (kg/ha) |    |    |    |     |  |  |  |
|---------|-----------------|----|----|----|-----|--|--|--|
|         | 0*              | 30 | 60 | 90 | 120 |  |  |  |
| L-T     | 23              | 21 | 28 | 27 | 62  |  |  |  |
| S-T     | 20              | 17 | 19 | 21 | 41  |  |  |  |

\* note these plots were accidentally fertilized at rate of 30 kg/ha in 2004

| Treatment | N Rate  | Yield  | Gross     | N Fert                   | N Margin       | Other Var. &     | Net (\$/A) |
|-----------|---------|--------|-----------|--------------------------|----------------|------------------|------------|
|           | (kg/ha) | (bu/A) | $(A)^{1}$ | cost (\$/A) <sup>2</sup> | <b>(</b> \$/A) | OH costs $(A)^3$ |            |
| LT - ZT   | 0*      | 14.88  | \$30.65   | \$7.48                   | \$23.17        | \$114.53         | (\$91.36)  |
|           | 30      | 15.48  | \$31.89   | \$7.48                   | \$24.41        | \$114.53         | (\$90.12)  |
|           | 60      | 22.95  | \$47.28   | \$14.95                  | \$32.33        | \$114.53         | (\$82.20)  |
|           | 90      | 30.17  | \$62.15   | \$22.43                  | \$39.72        | \$114.53         | (\$74.81)  |
|           | 120     | 33.16  | \$68.31   | \$29.90                  | \$38.41        | \$114.53         | (\$76.12)  |
|           |         |        |           |                          |                |                  |            |
| ST - ZT   | 0*      | 16.54  | \$49.79   | \$7.48                   | \$42.31        | \$114.53         | (\$72.22)  |
|           | 30      | 15.92  | \$47.92   | \$7.48                   | \$40.44        | \$114.53         | (\$74.09)  |
|           | 60      | 23.52  | \$70.80   | \$14.95                  | \$55.85        | \$114.53         | (\$58.68)  |
|           | 90      | 32.42  | \$97.58   | \$22.43                  | \$75.15        | \$114.53         | (\$39.38)  |
|           | 120     | 35.02  | \$105.41  | \$29.90                  | \$75.51        | \$114.53         | (\$39.02)  |

Table 5. Agronomic and economic analysis of nitrogen rate response study as a function of zero tillage management in in 2004.

1 Gross return = grain yield x price – (freight + handling [1.48/bu]) CWB PRO as of Jan 27, 2005 based on grade - \$3.01 for 3 CWRS - \$2.06 for 4 CWRS-

2 Fertilizer cost = \$420/tonne for urea (\$0.28/lb N) Agri-Core United Bulk Price in Spring 2004

3 Variable and overhead costs, except for N fertilizer, according to SAF costs of production for direct seeded spring wheat Black soil zone are \$7.09/bu.

\* these plots were fertilized at a rate of 30 kg/ha by accident in 2004

| N rate | NDVI (J | lune 15) | NDVI (J | June 23) | NDVI   | (June 30) |
|--------|---------|----------|---------|----------|--------|-----------|
|        | L-T     | S-T      | L-T     | S-T      | L-T    | S-T       |
| 0*     | 0.4775  | 0.4891   | 0.4914  | 0.4518   | 0.5291 | 0.5196    |
| 30     | 0.4851  | 0.4725   | 0.4622  | 0.4420   | 0.4995 | 0.5028    |
| 60     | 0.4536  | 0.4276   | 0.5175  | 0.4683   | 0.6098 | 0.5863    |
| 90     | 0.4610  | 0.4561   | 0.5726  | 0.4659   | 0.7223 | 0.6329    |
| 120    | 0.4745  | 0.4189   | 0.5604  | 0.4707   | 0.6922 | 0.6274    |
| N rate | NDVI (  | July 7)  | NDVI (  | July 14) | NDVI   | (July 30) |
|        | L-T     | S-T      | L-T     | S-T      | L-T    | S-T       |
| 0*     | 0.6301  | 0.6183   | 0.6627  | 0.5645   | 0.5082 | 0.4500    |
| 30     | 0.6245  | 0.5825   | 0.6562  | 0.5401   | 0.5015 | 0.4267    |
| 60     | 0.7262  | 0.6955   | 0.7470  | 0.6537   | 0.5805 | 0.5003    |
| 90     | 0.8103  | 0.7549   | 0.8008  | 0.7150   | 0.6521 | 0.6220    |
| 120    | 0.8049  | 0.7583   | 0.8056  | 0.7135   | 0.6965 | 0.6415    |

Table 6. The effect of N rate and length of No-Till on the NDVI values in spring wheat.

\*2004 plots for 0kg/ha rate of fertilizer were fertilized to 30 kg/ha by accident

Table 7. The effect of N fertilizer and P placement (side band and seed-placed) on grade of spring wheat in zero till management.

| N rate (kg/ha)       |        |        |        |      |        |        |      |      |        |      |
|----------------------|--------|--------|--------|------|--------|--------|------|------|--------|------|
|                      | 0*     |        | 30     |      | 60     |        | 90   |      | 120    |      |
| Length of<br>No-Till | seed   | side   | seed   | side | seed   | side   | seed | side | seed   | side |
| LT                   | 4      | 4      | good 3 | 4    | poor 3 | poor 3 | feed | feed | poor 4 | feed |
| ST                   | good 3 | good 3 | 2      | 3    | poor 2 | 2      | 3    | 3    | 4      | feed |

\*2004 plots for 0kg/ha rate of fertilizer were fertilized to 30 kg/ha by accident

| N rate (kg/ha)       |      |      |      |      |      |      |      |      |      |      |
|----------------------|------|------|------|------|------|------|------|------|------|------|
|                      | 0    | *    | 30   |      | 6    | 0    | 9    | 0    | 12   | 0    |
| Length of<br>No-Till | seed | side |
| LT                   | 12.9 | 12.9 | 13.2 | 13.2 | 13.0 | 12.9 | 13.4 | 13.3 | 13.9 | 13.8 |
| ST                   | 11.8 | 11.7 | 11.8 | 12.1 | 12.2 | 11.9 | 12.8 | 12.8 | 13.9 | 13.5 |

Table 8. The effect of N fertilizer and P placement on % protein of spring wheat in zero till management.

\*2004 plots for 0kg/ha rate of fertilizer were fertilized to 30 kg/ha by accident

## Study #2. The effects of starter N in lentils under long-term and short-term no-till management in 2004.

Producers are interested in the concept of starter nitrogen for pulse crops especially in lentil given their more indeterminate growth habit. Of interest as well is the observation that lentil grown on long-term continuously cropped no-till fields doesn't yield as well as on short term no-till fields. There is also concerns that fields with many cycles of lentil may also not yield as well, especially in the thin-black soil zone. Producers are interested in knowing if lentil grown on fields with low nitrogen fertility should be supplemented with fertilizer nitrogen. The present study permitted the investigation of some of those questions. A summary of pertinent agronomic information is given in Table 9.

A summary of the plant populations is given in Table 10. The plant populations were greater for long-term than short-term no-till and a reduction due to N was observed even though the nitrogen was midrow banded.

There was a significant length of No-Till x N rate interaction for grain yield (Table 11). The nature of the interaction is such that N rate had a greater yield reducing effect on the short-term than the long-term no-till. Overall the yields tended to be greater on the short-term than the long-term no-till.

We also did some spectral measurements with the GreenSeeker<sup>tm</sup> instrument which provides measures of Normalized Difference Vegetation Index (NDVI). NDVI is calculated as the ratios of the infrared and red bands using the relationship of (Infra-red - Red)/(Infra-red + Red). NDVI is an indirect measurement of the chlorophyll content of the crop canopy which in turn provides an indirect measurement of crop biomass. Chlorophyll absorbs radiation in the red band and reflects the infra-red radiation. This means that the higher the values for NDVI, the more the red band is being absorbed and consequently more chlorophyll is present hence more biomass. Measurements were conducted at six different times (Table 12). Actual biomass results are provided in Table 13. The overall biomass results were similar between long-term and short-term no-till as well as the N content (Table 14). The yield differences between long-term and short-term no-till cannot be attributed to these two factors. Results from the grading show that overall, the grades were lower for the long-term than the short term no-till.

| Variable                | Long-term No-Till                      | Short-term No-Till                     |  |
|-------------------------|----------------------------------------|----------------------------------------|--|
| Cultivar                | CDC Sedley                             | CDC Sedley                             |  |
| Seeding Date            | May 4                                  | May 4                                  |  |
| Seeding Rate            | 120 kg/ha                              | 120 kg/ha                              |  |
| Inoculant Rate and Type | Granular @5.6 kg/ha                    | Granular @5.6 kg/ha                    |  |
| Harvest Date            | Sept 23                                | Sept 23                                |  |
| Herbicide Use           |                                        |                                        |  |
| Pre-Seeding Burnoff     | Glyphos 667 gai/ha applied on<br>May 7 | Glyphos 667 gai/ha applied on<br>May 7 |  |

| Table 9. Other pertinent agronomic information for 2004 | Table 9. Other | pertinent | agronomic | information | for 2004 |
|---------------------------------------------------------|----------------|-----------|-----------|-------------|----------|
|---------------------------------------------------------|----------------|-----------|-----------|-------------|----------|

| In-Crop Herbicide                                                 | Sencor @ 204 g ai/ha on June 3<br>Poast Ultra @ 211.3 g ai/ha on<br>June 16 <sup>th</sup><br>Glyphos @ 890 g ai/ha on Aug<br>25 | Sencor @ 204 g ai/ha on June 3<br>Poast Ultra @ 211.3 g ai/ha on<br>June 16 <sup>th</sup><br>Glyphos @ 890 g ai/ha on Aug<br>25 |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Dessication                                                       | -                                                                                                                               | -                                                                                                                               |
| Fungicide Use                                                     |                                                                                                                                 |                                                                                                                                 |
| In-Crop                                                           | Headline EC@ 98.8 gai/ha on<br>July 12                                                                                          | Headline @ 98.8 gai/ha on July<br>12                                                                                            |
| Seeding Implement                                                 | Edwards Hoe Drill - 8" spacing                                                                                                  | Edwards Hoe Drill - 8"spacing                                                                                                   |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                 | 10.39 kg/ha                                                                                                                     | 9.75 kg/ha                                                                                                                      |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                | 30.72 kg/ha                                                                                                                     | 9.14 kg/ha                                                                                                                      |
| Potassium Sulfate Applied (kg/ha)                                 | 20 kg/ha on May                                                                                                                 | 20 kg/ha on May                                                                                                                 |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied (kg/ha) 12-51-00 | 54 kg/ha                                                                                                                        | 54 kg/ha                                                                                                                        |
| Nitrogen form and placement                                       | Urea - Midrow band on 16"<br>centers                                                                                            | Urea - Midrow band on 16"<br>centers                                                                                            |
| Crop Stage for NDVI on Jun 15                                     | 7 - 9 nodes                                                                                                                     | 7 - 9 nodes                                                                                                                     |
| Crop Stage for NDVI on Jun 23                                     | 9 - 10 nodes                                                                                                                    | 9 - 10 nodes                                                                                                                    |
| Crop Stage for NDVI on Jun 30                                     | 12 - 13 nodes                                                                                                                   | 11 - 13 nodes                                                                                                                   |
| Crop Stage for NDVI on Jul 7                                      | 13 - 16 nodes                                                                                                                   | 13 - 16 nodes                                                                                                                   |
| Crop Stage for NDVI on Jul 16                                     | full flower                                                                                                                     | full flower                                                                                                                     |
| Crop Stage for NDVI on Jul 30                                     | late flower 5% remaining                                                                                                        | late flower 5% remaining                                                                                                        |
| Soil pH                                                           | 7.9                                                                                                                             | 8.0                                                                                                                             |
| Salinity Rating                                                   | Non-saline                                                                                                                      | Non-saline                                                                                                                      |
| Soil Texture                                                      | Clay loam                                                                                                                       | Clay loam                                                                                                                       |

| Nitrogen rate (kg/ha) | Long Term No-Till | Short Term No-Till | Mean |
|-----------------------|-------------------|--------------------|------|
| 0                     | 247               | 164                | 206  |
| 15                    | 243               | 145                | 194  |
| 30                    | 213               | 147                | 180  |
| 60                    | 231               | 151                | 191  |
| Mean                  | 234               | 152                |      |

Table 10. The effects of years in no-till and nitrogen rate on plant populations (# m<sup>-2</sup>) for lentil in 2004.

| Table 11. The effects of y | ears in no-till and nitrog | en rate on grain yield (kg | /ha) for lentil in 2004. |
|----------------------------|----------------------------|----------------------------|--------------------------|
|                            |                            |                            |                          |

| Nitrogen rate (kg/ha)    | Long Term No-Till                                                                          | Short Term No-Till | Mean |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------|--------------------|------|--|--|--|--|--|
| 0                        | 450                                                                                        | 1063               | 757  |  |  |  |  |  |
| 15                       | 610                                                                                        | 595                | 603  |  |  |  |  |  |
| 30                       | 558                                                                                        | 829                | 694  |  |  |  |  |  |
| 60                       | 495                                                                                        | 685                | 591  |  |  |  |  |  |
| Mean                     | 528                                                                                        | 794                |      |  |  |  |  |  |
| cv=6.3%; nrate effect (J | cv=6.3%; nrate effect (p=0.008); linear N rate effect (p=0.0001); time in no-till x n rate |                    |      |  |  |  |  |  |

interaction (p=0.03);

\_

| Nitrogen                                                        | 8                        |                       |        |                                        | July 30              |                       |        |  |
|-----------------------------------------------------------------|--------------------------|-----------------------|--------|----------------------------------------|----------------------|-----------------------|--------|--|
| rate (kg/ha)                                                    | Long<br>Term No-<br>Till | Short Term<br>No-Till | Mean   |                                        | Long-term<br>No-till | Short-term<br>No-till | Mean   |  |
| 0                                                               | 0.5084                   | 0.5465                | 0.5275 |                                        | 0.8578               | 0.8529                | 0.8554 |  |
| 15                                                              | 0.5791                   | 0.5964                | 0.5878 |                                        | 0.8595               | 0.8559                | 0.8577 |  |
| 30                                                              | 0.6055                   | 0.6193                | 0.6124 |                                        | 0.8563               | 0.8492                | 0.8528 |  |
| 60                                                              | 0.4940                   | 0.5512                | 0.5226 |                                        | 0.8579               | 0.8469                | 0.8524 |  |
| Mean                                                            | 0.5468                   | 0.5784                |        |                                        | 0.8579               | 0.8512                |        |  |
| cv=6.4%; nrate effect (p=0.001); linear nrate effect (p=0.001). |                          |                       |        | ev=8.0%; nrate e<br>nrate effect (p=0. | <b>u</b> ,,          | limear                |        |  |

Table 12. The effects of years in no-till and nitrogen rate on NDVI for lentil in 2004 at two different times.

Table 13. The effects of years no-till and nitrogen rate on biomass production at flowering for lentil in 2004.

| Nitrogen rate (kg/ha) | Long Term No-Till | Short Term No-Till | Mean |
|-----------------------|-------------------|--------------------|------|
| 0                     | 2379              | 1903               | 2141 |
| 15                    | 2395              | 2543               | 2469 |
| 30                    | 2034              | 2822               | 2428 |
| 60                    | 2461              | 2362               | 2412 |
| Mean                  | 2317              | 2408               |      |

| Nitrogen rate (kg/ha) | Long Term No-Till | Short Term No-Till | Mean |
|-----------------------|-------------------|--------------------|------|
| 0                     | 67                | 59                 | 63   |
| 15                    | 75                | 93                 | 84   |
| 30                    | 71                | 94                 | 83   |
| 60                    | 80                | 79                 | 80   |
| Mean                  | 73                | 81                 |      |

Table 14. The effects of years no-till and nitrogen rate on nitrogen uptake of biomass at flowering for lentil in 2004.

Table 15. The effects of years no-till and nitrogen rate on grade of lentil in 2004.

| Nitrogen     | Long Term No-Till |            |     | Short Term No-Till |            |  |  |
|--------------|-------------------|------------|-----|--------------------|------------|--|--|
| rate (kg/ha) | Company #1        | Company #2 |     | Company #1         | Company #2 |  |  |
| 0            | Feed              | Feed       |     | Feed               | #3         |  |  |
| 15           | Feed              | Feed       |     | Feed #3            |            |  |  |
| 30           | Feed              | Feed       | ] [ | Feed #3            |            |  |  |
| 60           | Feed              | Feed       |     | Feed               | #3         |  |  |
| Mean         | Feed              | Feed       |     | Feed               | #3         |  |  |

## Study #3: The effects of long-term and short-term no-till and fungicides on the production of different classes of lentil in 2004.

The study examined three varieties of green lentils and two varieties of red lentil. We were interested in determining if there were interactions between fungicide application and length of time under no-till. Relevant agronomic information is presented in Table 16.

The recommended target plant population for lentil is 130 plants per meter square. Table 17 lists the treatment effects on plant populations. An interaction between cultivar and length of no-till was observed. The target plant population was obtained on the LTNT site but exceeded on the STNT site.

The grain yields were affected by time in no-till and cultivars effect and also a cultivar x lenght of no-till interaction (Table 18). As in 2003, the yields were greater on the STNT site than the LTNT site. The interaction is due to differences among varities between the LTNT and STNT sites. There was no fungicide effect.

The effect of time in no-till did have an effect on seed weight (Table 19). STNT had a higher average 1000 kernel seed weight than LTNT. There was no effect due to fungicide.

The overall grades were slightly better for the STNT than the LTNT site (Table 20).

| Variable                    | Long-term No-Till                                                                                                             | Short-term No-Till                                                                                                         |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Seeding Date                | May 4                                                                                                                         | May 4                                                                                                                      |
| Seeding Rate                | 130 kg/ha                                                                                                                     | 130 kg/ha                                                                                                                  |
| CDC Milestone (small green) | 46 kg/ha                                                                                                                      | 46 kg/ha                                                                                                                   |
| CDC Sedley (large green)    | 125 kg/ha                                                                                                                     | 125 kg/ha                                                                                                                  |
| CDC Vantage (medium green)  | 73 kg/ha                                                                                                                      | 73 kg/ha                                                                                                                   |
| CDC Redcap (large red)      | 54 kg/ha                                                                                                                      | 54 kg/ha                                                                                                                   |
| CDC Robin (small red)       | 34 kg/ha                                                                                                                      | 34 kg/ha                                                                                                                   |
| Inoculant Rate and Type     | Granular @ 5.6 kg/ha with the seed                                                                                            | Granular @ 5.6 kg/ha with the seed                                                                                         |
| Harvest Date                | Sept 23                                                                                                                       | Sept 23                                                                                                                    |
| Herbicide Use               |                                                                                                                               |                                                                                                                            |
| Pre-Seeding Burnoff         | Glyphos @ 667 gai/ha on<br>May 7                                                                                              | Glyphos @ 667 gai/ha on May<br>7                                                                                           |
| In-Crop Herbicide           | Sencor @204 gai/ha on June<br>3<br>Poast Ultra @211.3 g ai/ha<br>on June 16 <sup>th</sup><br>Glyphos @890 gai/ha on Aug<br>25 | Sencor @204 gai/ha on June 3<br>Poast Ultra @211.3 g ai/ha on<br>June 16 <sup>th</sup><br>Glyphos @890 gai/ha on Aug<br>25 |

#### Table 16. Other pertinent agronomic information for 2004.

| Dessication                                                       | -                                      | -                                    |
|-------------------------------------------------------------------|----------------------------------------|--------------------------------------|
| Fungicide Use                                                     |                                        |                                      |
| In-Crop                                                           | Headline EC@ 98.8 gai/ha<br>on July 12 | Headline @ 98.8 gai/ha on<br>July 12 |
| Seeding Implement                                                 | Edwards Hoe Drill - 8"<br>spacing      | Edwards Hoe Drill - 8"spacing        |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                 | 21                                     | 15                                   |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                | 18                                     | 48                                   |
| Potassium Sulfate Applied (kg/ha)                                 | 20 kg/ha on May 4                      | 20 kg/ha on May 4                    |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied (kg/ha) 11-52-00 | 25 kg/ha                               | 25 kg/ha                             |
| Soil pH                                                           | 7.9                                    | 8.0                                  |
| Salinity Rating                                                   | Non-saline                             | Non-saline                           |
| Soil Texture                                                      | Clay loam                              | Clay loam                            |

Table 17. The effects of time under no-till on plant populations  $(\#/^2)$  in 2004.

| Lentil Cultivar                                                                                                                                | Long-term No-till | Short-term No-Till |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|--|--|--|
| CDC Milestone                                                                                                                                  | 181               | 163                |  |  |  |
| CDC Sedley                                                                                                                                     | 140               | 151                |  |  |  |
| CDC Vantage                                                                                                                                    | 106               | 151                |  |  |  |
| CDC Redcap                                                                                                                                     | 126               | 135                |  |  |  |
| CDC Robin                                                                                                                                      | 136               | 166                |  |  |  |
| Mean                                                                                                                                           | 138               | 153                |  |  |  |
| cv=22.2%; Significant cultivar effect and cultivar x length of no-till effect.<br>The recommended seeding rate is 130 plants per square meter. |                   |                    |  |  |  |

| Lentil Cultivar                                                                                                | Long-term No-till | Short-term No-Till | Mean |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------|--|--|--|
| CDC Milestone                                                                                                  | 434               | 988                | 711  |  |  |  |
| CDC Sedley                                                                                                     | 315               | 750                | 533  |  |  |  |
| CDC Vantage                                                                                                    | 349               | 885                | 617  |  |  |  |
| CDC Redcap                                                                                                     | 544               | 1268               | 906  |  |  |  |
| CDC Robin                                                                                                      | 369               | 923                | 646  |  |  |  |
| Mean                                                                                                           | 402               | 963                |      |  |  |  |
| cv=10.6%; Significant cultivar effect (LSD05=150); time in no-till and cultivar x time in no-till interaction. |                   |                    |      |  |  |  |

Table 18. The effects of time under no-till on grain yield (kg/ha) in 2004.

| Lentil Cultivar                                  | Long-term No-till | Short-term No-Till | Mean  |  |  |
|--------------------------------------------------|-------------------|--------------------|-------|--|--|
| CDC Milestone                                    | 21.73             | 24.05              | 22.89 |  |  |
| CDC Sedley                                       | 36.29             | 51.02              | 43.66 |  |  |
| CDC Vantage                                      | 24.86             | 35.01              | 29.94 |  |  |
| CDC Redcap                                       | 22.83             | 22.32              | 22.58 |  |  |
| CDC Robin                                        | 18.99             | 17.83              | 18.41 |  |  |
| Mean                                             | 24.94             | 30.05              |       |  |  |
| cv=2.3%; Significant cultivar effect (LSD05=0.9) |                   |                    |       |  |  |

Table 19. The effects of time under no-till on 1000 seed weight (g) in 2004.

| Lentil        | TMT          | Long Te    | rm No-Till |  | Short Ter  | m No-Till  |
|---------------|--------------|------------|------------|--|------------|------------|
| Cultivar      |              | Company #1 | Company #2 |  | Company #1 | Company #2 |
| CDC Milestone | Fungicide    | Feed       | Feed       |  | Feed       | Feed       |
|               | No Fungicide | Feed       | Feed       |  | Feed       | Feed       |
| CDC Sedley    | Fungicide    | Feed       | Feed       |  | #3         | #3         |
|               | No Fungicide | Feed       | Feed       |  | Feed       | #3         |
| CDC Vantage   | Fungicide    | Feed       | Feed       |  | Feed       | Feed       |
|               | No Fungicide | Feed       | Feed       |  | Feed       | Feed       |
| CDC Redcap    | Fungicide    | Feed       | Feed       |  | #3         | #3         |
|               | No Fungicide | Feed       | Feed       |  | #3         | #3         |
| CDC Robin     | Fungicide    | Feed       | Feed       |  | Feed       | #3         |
|               | No Fungicide | Feed       | Feed       |  | #3         | Feed       |

Table 20. The effects of length of no-till and fungicide on grade of lentil in 2004.

### Study #4: The effects of long-term and short-term no-till on the response of flax, canary seed and oat to nitrogen fertilizer in 2004.

It is well known that crops like flax, canary seed and oat are not as responsive to nitrogen fertilizer as crops like wheat and canola. The objective of the study was quantify the N response of these three crops on the long-term and short-tem no-till fields. A summary of pertinent agronomic information is provided in Table 21. In order to test out as many rates as possible, 11 rates of N (from 0-100 kg N /ha in 10 kg increments) were employed with only one replicate. NDVI measurements were collected with a Green Seeker<sup>tm</sup> instrument on six separate occasions to try and establish a relationship between NDVI and grain yield. The summary of grain yield results is provided in Table 22.

Overall with oat, a significant response to N was observed and the yield was greater for the longterm than the short-term no-till site, especially at the lower N rates. As well, we showed very strong relationships between NDVI and grain yield on both seeding dates (Table 23).

With flax, the overall response to N was weak and the differences between the two field histories were not obvious like in oat (Table 22). The yields were lower for the LTNT than the STNT due to the frost received on August 20<sup>th</sup>, 2004. The effects of the frost were greatest at the higher N rates. There was a good response to N on the short term site. The relationship between NDVI and grain yield was weak on the long-term site and very strong on the short-term site (Table 23).

The yield results for canary seed are suspect because of problems with frost and the influence of aphids. Nonetheless, there was a very strong relationship between NDVI and grain yield for the short-term but not the long-term no-till site.

| Variable                           | Long-term No-Till                                                                                                       | Short-term No-Till                                                                                                      |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                    | Flax                                                                                                                    |                                                                                                                         |  |  |  |
| Cultivar                           | CDC Bethune                                                                                                             | CDC Bethune                                                                                                             |  |  |  |
| Seeding Date                       | May 4                                                                                                                   | May 4                                                                                                                   |  |  |  |
| Seeding Rate                       | 56 kg/ha                                                                                                                | 56 kg/ha                                                                                                                |  |  |  |
| Harvest Date                       | Oct 7                                                                                                                   | Oct 7                                                                                                                   |  |  |  |
| Herbicide Use                      |                                                                                                                         |                                                                                                                         |  |  |  |
| Pre-Seeding Burnoff                | Glyphos @ 667 gai/ha on May 7                                                                                           | Glyphos @ 667 gai/ha on May 7                                                                                           |  |  |  |
| In-Crop Herbicide                  | Poast Ultra @ 211.3 gai/ha on June<br>16<br>Lontrel @ 98.9 gai/ha on June 16<br>MCPA Ester @ 553.5 gai/ha on<br>June 16 | Poast Ultra @ 211.3 gai/ha on<br>June 16<br>Lontrel @ 98.9 gai/ha on June 16<br>MCPA Ester @ 553.5 gai/ha on<br>June 16 |  |  |  |
| Post Harvest                       | -                                                                                                                       | -                                                                                                                       |  |  |  |
| GreenSeeker (Jun 15)<br>Crop Stage | 2 - 3 inches                                                                                                            | 2 - 4 inches                                                                                                            |  |  |  |

 Table 21. Other pertinent agronomic information in 2004.

| GreenSeeker (Jun 23)<br>Crop Stage                                   | 3.5 - 4 inches                 | 4 - 6 inches                  |  |
|----------------------------------------------------------------------|--------------------------------|-------------------------------|--|
| GreenSeeker (Jun 30)<br>Crop Stage                                   | 6 - 8 inches                   | 8 - 12 inches                 |  |
| GreenSeeker (July 7) Crop<br>Stage                                   | 10 - 14 inches                 | 10 - 13 inches                |  |
| GreenSeeker (July 14)<br>Crop Stage                                  | 20 % flowering                 | 10% flowering                 |  |
| GreenSeeker (July 30)<br>Crop Stage                                  | 30% bloom                      | 30% bloom                     |  |
| Seeding Implement                                                    | Edwards Hoe Drill - 8" spacing | Edwards Hoe Drill - 8"spacing |  |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                    | 27                             | 26                            |  |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                   | 68                             | 26                            |  |
| Potassium Sulfate Applied<br>(kg/ha)                                 | 20 kg/ha on broadcast applied  | 20 kg/ha on broadcast applied |  |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied<br>(kg/ha) 11-52-00 | 48 kg/ha seed placed           | 48 kg/ha seed placed          |  |
| Soil pH                                                              | 7.9                            | 8.0                           |  |
| Salinity Rating                                                      | Non-saline                     | Non-saline                    |  |
| Soil Texture                                                         | Clay loam                      | Clay loam                     |  |
|                                                                      | Can                            | aryseed                       |  |
| Cultivar                                                             | CDC Maria                      | CDC Maria                     |  |
| Seeding Date                                                         | May 4                          | May 4                         |  |
| Seeding Rate                                                         | 35 kg/ha                       | 35 kg/ha                      |  |
| Harvest Date                                                         | Sept 23                        | Sept 23                       |  |
| Herbicide Use                                                        |                                |                               |  |
| Pre-Seeding Burnoff                                                  | Glyphos @ 667 gai/ha on May 7  | Glyphos @ 667 gai/ha on May 7 |  |

|                                                                      |                                                                                                                                                   | 1                                                                                                                                                 |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| In-Crop Herbicide                                                    | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.5 gai/ha on<br>June 16<br>Attain @ 142.3 gai/ha on June 16<br>Glyphos @ 890 gai/ha on Aug 25 | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.3 gai/ha on<br>June 16<br>Attain @ 142.3 gai/ha on June 16<br>Glyphos @ 890 gai/ha on Aug 25 |  |  |  |
| Post Harvest                                                         | -                                                                                                                                                 | -                                                                                                                                                 |  |  |  |
| Seeding Implement                                                    | Edwards Hoe Drill - 8" spacing                                                                                                                    | Edwards Hoe Drill - 8"spacing                                                                                                                     |  |  |  |
| GreenSeeker (Jun 15)<br>Crop Stage                                   | 2 - 3 inches                                                                                                                                      | 2 - 4 inches                                                                                                                                      |  |  |  |
| GreenSeeker (Jun 23)<br>Crop Stage                                   | 3.5 - 4 inches                                                                                                                                    | 4 - 6 inches                                                                                                                                      |  |  |  |
| GreenSeeker (Jun 30)<br>Crop Stage                                   | 6 - 8 inches                                                                                                                                      | 8 - 12 inches                                                                                                                                     |  |  |  |
| GreenSeeker (July 7) Crop<br>Stage                                   | 10 - 14 inches                                                                                                                                    | 10 - 13 inches                                                                                                                                    |  |  |  |
| GreenSeeker (July 14)<br>Crop Stage                                  | 20 % flowering                                                                                                                                    | 10% flowering                                                                                                                                     |  |  |  |
| GreenSeeker (July 30)<br>Crop Stage                                  | milk stage                                                                                                                                        | milk stage                                                                                                                                        |  |  |  |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                    | 15                                                                                                                                                | 19                                                                                                                                                |  |  |  |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                   | 33                                                                                                                                                | 25                                                                                                                                                |  |  |  |
| Potassium Sulfate Applied<br>(kg/ha)                                 | 30 kg/ha broadcast applied                                                                                                                        | 30 kg/ha broadcast applied                                                                                                                        |  |  |  |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied<br>(kg/ha) 11-52-00 | 48 kg/ha seed placed                                                                                                                              | 48 kg/ha seed placed                                                                                                                              |  |  |  |
| Soil pH                                                              | 7.9                                                                                                                                               | 8.0                                                                                                                                               |  |  |  |
| Salinity Rating                                                      | Non-saline                                                                                                                                        | Non-saline                                                                                                                                        |  |  |  |
| Soil Texture                                                         | Clay loam                                                                                                                                         | Clay loam                                                                                                                                         |  |  |  |
|                                                                      | OAT                                                                                                                                               |                                                                                                                                                   |  |  |  |
| Cultivar                                                             | AC Morgan                                                                                                                                         | AC Morgan                                                                                                                                         |  |  |  |
| Seeding Date                                                         | May 4                                                                                                                                             | May 4                                                                                                                                             |  |  |  |
| Seeding Rate                                                         | 156 kg/ha                                                                                                                                         | 156 kg/ha                                                                                                                                         |  |  |  |

| Harvest Date                                                         | Sept 7                                                                                                                                            | Sept 7                                                                                                                                            |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Herbicide Use                                                        |                                                                                                                                                   |                                                                                                                                                   |
| Pre-Seeding Burnoff                                                  | Glyphos @ 667 gai/ha on May 7                                                                                                                     | Glyphos @ 667 gai/ha on May 7                                                                                                                     |
| In-Crop Herbicide                                                    | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.5 gai/ha on<br>June 16<br>Attain @ 142.3 gai/ha on June 16<br>Glyphos @ 890 gai/ha on Aug 25 | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.5 gai/ha on<br>June 16<br>Attain @ 142.3 gai/ha on June 16<br>Glyphos @ 890 gai/ha on Aug 25 |
| Post Harvest                                                         | -                                                                                                                                                 | -                                                                                                                                                 |
| GreenSeeker (Jun 15)<br>Crop Stage                                   | 2 - 3 inches                                                                                                                                      | 2 - 4 inches                                                                                                                                      |
| GreenSeeker (Jun 23)<br>Crop Stage                                   | 3.5 - 4 inches                                                                                                                                    | 4 - 6 inches                                                                                                                                      |
| GreenSeeker (Jun 30)<br>Crop Stage                                   | 6 - 8 inches                                                                                                                                      | 8 - 12 inches                                                                                                                                     |
| GreenSeeker (July 7) Crop<br>Stage                                   | 10 - 14 inches                                                                                                                                    | 10 - 13 inches                                                                                                                                    |
| GreenSeeker (July 14)<br>Crop Stage                                  | 20 % flowering                                                                                                                                    | 10% flowering                                                                                                                                     |
| GreenSeeker (July 30)<br>Crop Stage                                  | Late milk stage                                                                                                                                   | Late milk stage                                                                                                                                   |
| Seeding Implement                                                    | Edwards Hoe Drill - 8" spacing                                                                                                                    | Edwards Hoe Drill - 8"spacing                                                                                                                     |
| Soil Test NO3-N (kg/ha)<br>0-30cm                                    | 39                                                                                                                                                | 70                                                                                                                                                |
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                   | 29                                                                                                                                                | 5                                                                                                                                                 |
| Potassium Sulfate Applied<br>(kg/ha)                                 | 20 kg /ha surface broadcast on                                                                                                                    | 20 kg/ha on broadcast applied                                                                                                                     |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied<br>(kg/ha) 11-52-00 | 48 kg/ha seed placed                                                                                                                              | 48 kg/ha seed placed                                                                                                                              |
| Soil pH                                                              | 7.9                                                                                                                                               | 8.0                                                                                                                                               |
| Salinity Rating                                                      | Non-saline                                                                                                                                        | Non-saline                                                                                                                                        |
| Soil Texture                                                         | Clay loam                                                                                                                                         | Clay loam                                                                                                                                         |

| N rate  | Fla  | ıx   | Cana | Canaryseed |  | Oa   | at   |
|---------|------|------|------|------------|--|------|------|
| (kg/ha) | L-T  | S-T  | L-T  | S-T        |  | L-T  | S-T  |
| 0       | 359  | 755  | 8    | 254        |  | 1712 | 826  |
| 10      | 611  | 705  | 13   | 137        |  | 1626 | 926  |
| 20      | 511  | 1015 | 16   | 246        |  | 2127 | 1781 |
| 30      | 1024 | 940  | 10   | 399        |  | 1887 | 2031 |
| 40      | 728  | 1280 | 12   | 403        |  | 2244 | 2465 |
| 50      | 563  | 1239 | 7    | 842        |  | 3884 | 3298 |
| 60      | 953  | 1374 | 15   | 514        |  | 3743 | 4320 |
| 70      | 1045 | 1485 | 23   | 829        |  | 3705 | 3809 |
| 80      | 986  | 1124 | 13   | 726        |  | 4679 | 2952 |
| 90      | 1226 | 1501 | 42   | 700        |  | 2973 | 3878 |
| 100     | 1038 | 1731 | 55   | 652        |  | 3476 | 5181 |
| Mean    | 822  | 1195 | 19   | 518        |  | 2914 | 2861 |

 Table 22. The effects of nitrogen fertilizer on the yield (kg/ha) of flax, canary seed and oat under long-term and short-term no-till in 2004.

| Field<br>History | NDVI<br>Measurement | # of<br>Observations | Linear Equation                | R <sup>2</sup><br>(%) | Significance |
|------------------|---------------------|----------------------|--------------------------------|-----------------------|--------------|
|                  |                     |                      | Flax                           |                       |              |
| Long-Term        | June 15             | 11                   | kg/ha = 350 + 1297[NDVIJn15]   | 0.6                   | ns           |
|                  | June 23             | 11                   | kg/ha =-1520 + 6468[NDVIJn23]  | 36                    | 0.0501       |
|                  | June 30             | 11                   | kg/ha = -468 + 2778[NDVIJn30]  | 56                    | 0.0078       |
|                  | July 7              | 11                   | kg/ha = -407 + 2066[NDVIJy7]   | 54                    | 0.0105       |
|                  | July 14             | 11                   | kg/ha = -642 +2290[NDVIJy14]   | 67                    | 0.0022       |
|                  | July 30             | 11                   | kg/ha = -1548 + 3104[NDVIJy30] | 60                    | 0.0052       |
| Short-Term       | June 15             | 11                   | kg/ha = 174 + 2793[NDVIJn15]   | 3                     | ns           |
|                  | June 23             | 11                   | kg/ha =-1639+ 6821[NDVIJn23]   | 64                    | 0.0032       |
|                  | June 30             | 11                   | kg/ha = -898 + 4211[NDVIJn30]  | 81                    | 0.0002       |
|                  | July 7              | 11                   | kg/ha = -840 + 3154[NDVIJy7]   | 83                    | 0.0001       |
|                  | July 14             | 11                   | kg/ha = -608 +2859[NDVIJy14]   | 81                    | 0.0002       |
|                  | July 30             | 11                   | kg/ha = -1956 + 4171[NDVIJy30] | 77                    | 0.0004       |
|                  | ·                   |                      |                                |                       |              |
|                  |                     |                      | Canaryseed                     |                       |              |
| Long-Term        | June 15             | 11                   | kg/ha = -4 + 70[NDVIJn15]      | 2                     | ns           |
|                  | June 23             | 11                   | kg/ha = -32 + 131[NDVIJn23]    | 46                    | 0.0216       |
|                  | June 30             | 11                   | kg/ha = -21 +75[NDVIJn30]      | 50                    | 0.0150       |
|                  | July 7              | 11                   | kg/ha = -21 + 67[NDVIJy7]      | 45                    | 0.0237       |
|                  | July 14             | 11                   | kg/ha = -28 +77[NDVIJy14]      | 55                    | 0.0088       |
|                  | July 30             | 11                   | kg/ha = -56 +109[NDVIJy30]     | 44                    | 0.0268       |
| Short-Term       | June 15             | 11                   | kg/ha = 9 + 1527[NDVIJn15]     | 44                    | 0.0260       |
|                  | June 23             | 11                   | kg/ha =-830 +3519[NDVIJn23]    | 84                    | 0.0001       |
|                  | June 30             | 11                   | kg/ha = 649 - 365[NDVIJn30]    | 5                     | ns           |
|                  | July 7              | 11                   | kg/ha = -430 +1441[NDVIJy7]    | 85                    | 0.0001       |
|                  | July 14             | 11                   | kg/ha = -472 1521[NDVIJy14]    | 83                    | 0.0001       |

Table 23. Linear regression equations between grain yield and NDVI measurements in 2004.

|            | July 30 | 11 | kg/ha = -805 + 1898[NDVIJy30]  | 80 | 0.0002 |
|------------|---------|----|--------------------------------|----|--------|
|            |         |    |                                |    |        |
|            |         |    | Oat                            |    |        |
| Long-Term  | June 15 | 11 | kg/ha = -3020+ 12554[NDVIJn15] | 77 | 0.0004 |
|            | June 23 | 11 | kg/ha =-1226 + 7141[NDVIJn23]  | 81 | 0.0002 |
|            | June 30 | 11 | kg/ha = -1128 + 6313[NDVIJn30] | 76 | 0.0004 |
|            | July 7  | 11 | kg/ha = -1443+ 6417[NDVIJy7]   | 76 | 0.0005 |
|            | July 14 | 11 | kg/ha = -983 +5581[NDVIJy14]   | 59 | 0.0060 |
|            | July 30 | 11 | kg/ha = -3608 +9123[NDVIJy30]  | 80 | 0.0002 |
| Short-Term | June 15 | 11 | kg/ha =-4257 + 14655[NDVIJn15] | 89 | 0.0001 |
|            | June 23 | 11 | kg/ha =-2757 + 9675[NDVIJn23]  | 85 | 0.0001 |
|            | June 30 | 11 | kg/ha = -2210+ 8180[NDVIJn30]  | 85 | 0.0001 |
|            | July 7  | 11 | kg/ha = -2214 + 7689[NDVIJy7]  | 86 | 0.0001 |
|            | July 14 | 11 | kg/ha = -2169 +7750[NDVIJy14]  | 82 | 0.0001 |
|            | July 30 | 11 | kg/ha = -3225 + 8922[NDVIJy30] | 82 | 0.0001 |

## Study #5: The effects of long-term and short-term no-till on the response of field pea and spring wheat phosphorus fertilizer in 2004.

As with the other studies, the proximity of the two fields with very contrasting cropping histories permitted an evaluation on phosphorus response. The effects were investigated in field pea and spring wheat by using different rates of  $P_2O_5$  (ranging from 0 - 45 lbs  $P_2O_5$ /ac in 5 lb increments) and only one replicate for each crop. The plots alternate between field pea and spring wheat on the same group of plots and the same rates of P are used on the plots year after year.

A summary of the pertinent agronomic information for spring wheat and field pea is provided in Table 24. Field history had no effect on phosphorus response in field pea (Table 25). The yields in 2004 favored the STNT site versus the LTNT site which is opposite to 2003. Based on our observation, the frost damage appeared worst on the LTNT than the STNT site explaining somewhat the discrepancy between the two years. We observed lower plant numbers on the STNT than the LTNT plots and the effects of seed-placed P appeared to have a larger effect on the STNT than the LTNT site. This will need to be investigated more fully over time.

Plant numbers were greater for the LTNT than the STNT site and the effects of seed-placed P on plant numbers tended to be greater on the STNT site (Table 26). The grain yields were slightly higher for the STNT than the LTNT site. Their appeared to be a P response on the STNT but not the LTNT site. If that is the case, it may be possible to skip the expense of P fertilizer in some years and invest it in N fertilizer. It also warrants more studies to examine more closely the cycling of P in no-till systems.

| Variable                          | Long-term No-Till Short-term No-Ti                               |                                                                  |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|
|                                   | Field Pea                                                        |                                                                  |  |  |  |  |
| Cultivar                          | Eclipse                                                          | Eclipse                                                          |  |  |  |  |
| Seeding Date                      | May 4                                                            | May 4                                                            |  |  |  |  |
| Seeding Rate                      | 210 kg/ha                                                        | 210 kg/ha                                                        |  |  |  |  |
| Inoculant Rate and Type           | Granular @5.6 kg/ha seed-placed                                  | Granular @5.6 kg/ha seed-placed                                  |  |  |  |  |
| Harvest Date                      | Sept 23                                                          | Sept 23                                                          |  |  |  |  |
| Herbicide Use                     |                                                                  |                                                                  |  |  |  |  |
| Pre-Seeding Burnoff               | Glyphos @667 gai/ha on May 7                                     | Glyphos @667 gai/ha on May 7                                     |  |  |  |  |
| In-Crop Herbicide                 | Odyssey @14.8 gai/ha on June 16<br>Glyphos @890 gai/ha on Aug 25 | Odyssey @14.8 gai/ha on June 16<br>Glyphos @890 gai/ha on Aug 25 |  |  |  |  |
| Post Harvest                      | -                                                                | -                                                                |  |  |  |  |
| Greenseeker June 15 Crop<br>Stage | 5 nodes                                                          | 5 nodes                                                          |  |  |  |  |
| Greenseeker June 23 Crop<br>Stage | 7 - 9 nodes                                                      | 7 - 9 nodes                                                      |  |  |  |  |

#### Table 24. Other pertinent agronomic information.

| Greenseeker June 30 Crop<br>Stage    | 9 - 10 nodes                                                                                                                                                                           | 9 - 10 nodes                                                                                                                                                                              |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Greenseeker July 7 Crop<br>Stage     | 12 - 14 nodes                                                                                                                                                                          | 11 - 13 nodes                                                                                                                                                                             |  |  |  |
| Greenseeker July 14 Crop<br>Stage    | 50 - 60 % flowering                                                                                                                                                                    | 50 - 60 % flowering                                                                                                                                                                       |  |  |  |
| Greenseeker July 30 Crop<br>Stage    | 30 % still flowering                                                                                                                                                                   | 30 % still flowering                                                                                                                                                                      |  |  |  |
| Seeding Implement                    | Edwards Hoe Drill - 8" spacing                                                                                                                                                         | Edwards Hoe Drill - 8"spacing                                                                                                                                                             |  |  |  |
| Soil Test NO3-N (kg/ha)<br>0-30cm    | 23                                                                                                                                                                                     | 28                                                                                                                                                                                        |  |  |  |
| Soil Test PO4-P (kg/ha)<br>0-30 cm   | 39                                                                                                                                                                                     | 15                                                                                                                                                                                        |  |  |  |
| Potassium Sulfate Applied<br>(kg/ha) | 20 kg/ha surface broadcast on May<br>4                                                                                                                                                 | 20 kg/ha surface broadcast on Mag<br>4                                                                                                                                                    |  |  |  |
| Soil pH                              | 7.9                                                                                                                                                                                    | 8.0                                                                                                                                                                                       |  |  |  |
| Salinity Rating                      | Non-saline                                                                                                                                                                             | Non-saline                                                                                                                                                                                |  |  |  |
| Soil Texture                         | Clay loam                                                                                                                                                                              | Clay loam                                                                                                                                                                                 |  |  |  |
|                                      | Spr                                                                                                                                                                                    | ing wheat                                                                                                                                                                                 |  |  |  |
| Cultivar                             | Prodigy                                                                                                                                                                                | Prodigy                                                                                                                                                                                   |  |  |  |
| Seeding Date                         | May 4                                                                                                                                                                                  | May 4                                                                                                                                                                                     |  |  |  |
| Seeding Rate                         | 134 kg/ha                                                                                                                                                                              | 134 kg/ha                                                                                                                                                                                 |  |  |  |
| Harvest Date                         | Sept 7                                                                                                                                                                                 | Sept 7                                                                                                                                                                                    |  |  |  |
| Herbicide Use                        |                                                                                                                                                                                        |                                                                                                                                                                                           |  |  |  |
| Pre-Seeding Burnoff                  | Glyphos @ 667 gai/ha on May 7                                                                                                                                                          | Glyphos @ 667 gai/ha on May 7                                                                                                                                                             |  |  |  |
| In-Crop Herbicide                    | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.5 gai/ha on<br>June 16<br>Attain @ 142.3 gai/ha on June 16<br>Achieve @ 197.7 gai/ha on June 16<br>Glyphos @ 890 gai/ha on Aug 25 | Lontrel @ 98.9 gai/ha on June 16<br>MCPA ester @ 553.5 gai/ha on<br>June 16<br>Attain @ 142.3 gai/ha on June 16<br>Achieve @ 197.7 gai/ha on June<br>16<br>Glyphos @ 890 gai/ha on Aug 25 |  |  |  |
| Post Harvest                         | -                                                                                                                                                                                      | -                                                                                                                                                                                         |  |  |  |

| GreenSeeker June 15 Crop<br>Stage     | 3.5 leaves                        | 3.5 leaves                        |  |  |  |
|---------------------------------------|-----------------------------------|-----------------------------------|--|--|--|
| GreenSeekerJune 23 Crop<br>Stage      | 3.8 - 4.3 leaves                  | 3.8 - 4.3 leaves                  |  |  |  |
| GreenSeekerJune 30 Crop<br>Stage      | 5.7 - 5.9 leaves                  | 5.7 - 5.9 leaves                  |  |  |  |
| GreenSeekerJuly 7 Crop<br>Stage       | 7 leaves to early flag            | 7 leaves to early flag            |  |  |  |
| GreenSeekerJuly 14 Crop<br>Stage      | Head just emerging                | late booth / early head emerging  |  |  |  |
| GreenSeekerJuly 30 Crop<br>Stage      | late milk                         | late milk                         |  |  |  |
| Seeding Implement                     | Edwards Hoe Drill - 8" spacing    | Edwards Hoe Drill - 8"spacing     |  |  |  |
| Soil Test NO3-N (kg/ha)<br>0-30cm     | 23                                | 39                                |  |  |  |
| Soil Test PO4-P (kg/ha)<br>0-15 cm    | 28                                | 15                                |  |  |  |
| Potassium Sulfate Applied<br>(kg/ha)  | 20 kg/ha surface applied on May 4 | 20 kg/ha surface applied on May 4 |  |  |  |
| Urea -N fertilizer applied<br>(kg/ha) | 90 kg/ha mid-row band at seeding  | 90 kg/ha mid-row band at seeding  |  |  |  |
| Soil pH                               | 7.9                               | 8.0                               |  |  |  |
| Salinity Rating                       | Non-saline                        | Non-saline                        |  |  |  |
| Soil Texture                          | Clay loam                         | Clay loam                         |  |  |  |

| long-term a                   | na snor | t-te | rm i | 10-         | till in       | 200 | 94.           |               |             | -            |        |          |        |     |     |        |          |        |        |
|-------------------------------|---------|------|------|-------------|---------------|-----|---------------|---------------|-------------|--------------|--------|----------|--------|-----|-----|--------|----------|--------|--------|
| P <sub>2</sub> O <sub>5</sub> | PP      | MS   |      |             | YIELD (kg/ha) |     |               |               |             | ND           | VI (J  | June 15) |        |     | NDV | /I (J  | June 23) |        |        |
| rate<br>(kg/ha)               | L-T     | S-   | Т    |             | L-            | Т   | S-T           | S-T           |             |              |        | г ѕ-т    |        |     |     | L-T    | ,        | S-T    |        |
| 0                             | 59      | 4    | 1    |             | 338           | 37  | 4066          |               |             | 0            | .33    | 63 0.274 |        | 1   |     | 0.315  | 53       | 0.2875 |        |
| 5                             | 53      | 4    | 3    |             | 276           | 54  | 3663          |               |             | 0            | .33    | 39       | 0.278  | 9   |     | 0.314  | 1        | 0.3020 |        |
| 10                            | 57      | 4    | 6    |             | 297           | 70  | 3609          |               |             | 0            | .31    | 15       | 0.254  | 4   |     | 0.313  | 8        | 0.2546 |        |
| 15                            | 63      | 34   | 4    |             | 293           | 39  | 3847          |               |             | 0            | .31    | 32       | 0.252  | 9   |     | 0.298  | 32       | 0.2659 |        |
| 20                            | 53      | 4    | 9    |             | 291           | 18  | 3922          |               |             | 0            | .32    | 24       | 0.250  | 5   |     | 0.300  | )5       | 0.2660 |        |
| 25                            | 45      | 5:   | 5    |             | 192           | 28  | 4043          |               |             | 0            | .30    | 42       | 0.265  | 5   |     | 0.290  | )8       | 0.2793 |        |
| 30                            | 46      | 4    | 3    |             | 348           | 31  | 4089          |               |             | 0            | .31    | 88       | 0.273  | 3   |     | 0.291  | 1        | 0.2762 |        |
| 35                            | 54      | 34   | 4    |             | 291           | 18  | 4404          |               |             | 0            | .30    | 72       | 0.264  | 2   |     | 0.386  | 66       | 0.2825 |        |
| 40                            | 40      | 3.   | 3    |             | 307           | 70  | 3836          |               |             | 0.30         |        | 73       | 0.2507 |     |     | 0.283  | 2        | 0.2591 |        |
| 45                            | 49      | 3    | 1    |             | 312           | 22  | 3384          |               | 0.          |              | ).3130 |          | 0.2574 |     |     | 0.2853 |          | 0.2669 |        |
| MEAN                          | 52      | 4    | 1    |             | 295           | 50  | 3886          |               |             |              | ns     |          | ns     |     |     | ns     |          | ns     |        |
| P <sub>2</sub> O <sub>5</sub> | ND      | VI(J | June | e 3(        | 0)            |     | NDVI          | NDVI (July 7) |             | 7) NDVI (Jul |        | July     | 14     | 4)  |     | NDVI ( | July 30) |        |        |
| rate<br>(kg/ha)               | L-T     |      |      | <b>S-</b> ' | Т             |     | L-T           | S-T           |             | Γ            |        | ]        | L-T    |     | S-  | Т      |          | L-T    | S-T    |
| 0                             | 0.412   | 27   | 0    | .38         | 865           |     | 0.5746        | 0.            | ).4850      |              |        | 0.       | 6848   | 0   | .64 | 448    |          | 0.7732 | 0.7498 |
| 5                             | 0.422   | 20   | 0    | .39         | 989           |     | 0.5506        | 0.            | 542         | 24           |        | 0.       | 6729   | 0   | .70 | )65    |          | 0.7732 | 0.7621 |
| 10                            | 0.396   | 61   | 0    | .32         | 261           |     | 0.5328        | 0.4519        |             |              | 0.     | 6942     | 0      | .62 | 288 |        | 0.7659   | 0.7474 |        |
| 15                            | 0.416   | 52   | 0    | .34         | 136           |     | 0.5579        | 0.            | 462         | 27           |        | 0.       | 6872   | 0   | .6' | 741    |          | 0.7729 | 0.7681 |
| 20                            | 0.384   | 5    | 0    | .35         | 512           |     | 0.5458 0.4    |               | 474         | 46           |        | 0.       | 6695   | 0   | .62 | 217    |          | 0.7723 | 0.7548 |
| 25                            | 0.374   | 8    | 0    | .34         | 184           |     | 0.4801 0.4    |               | <b>4</b> 8′ | 70           |        | 0.       | 6275   | 0   | .64 | 420    |          | 0.7605 | 0.7629 |
| 30                            | 0.386   | 61   | 0    | .35         | 539           |     | 0.5093        | 0.            | 49:         | 59           |        | 0.       | 6487   | 0   | .6  | 579    |          | 0.7557 | 0.7681 |
| 35                            | 0.386   | 66   | 0    | .37         | 751           |     | 0.5161 0.5131 |               | 31          |              | 0.     | 6620     | 0      | .6  | 521 |        | 0.7701   | 0.7620 |        |
| 40                            | 0.362   | 25   | 0    | .29         | 959           |     | 0.4806        | 0.            | 41′         | 75           |        | 0.       | 6107   | 0   | .5' | 754    |          | 0.7549 | 0.7417 |
| 45                            | 0.376   | 64   | 0    | .32         | 250           |     | 0.4814        | 0.            | 45          | 00           |        | 0.       | 6107   | 0   | .64 | 428    |          | 0.7527 | 0.7602 |

Table 25. The effects of phosphorus fertilizer rate on the yield (kg/ha) and NDVI on field pea under long-term and short-term no-till in 2004.

| P <sub>2</sub> O <sub>5</sub> | PP     | MS     |      |      | YI  | YIELD (kg/ha) |            |              |     | NDVI (June 15) |     |        |       |           |            | NDV    | JI (J    | June 23) |        |  |   |     |  |     |  |
|-------------------------------|--------|--------|------|------|-----|---------------|------------|--------------|-----|----------------|-----|--------|-------|-----------|------------|--------|----------|----------|--------|--|---|-----|--|-----|--|
| rate<br>(kg/ha)               | L-T    | S-     | Т    |      | L-  | Т             | S-T        |              | S-T |                | S-T |        | S-T   |           |            |        | L-7      | Г        | S-T    |  | ľ | L-T |  | S-T |  |
| 0                             | 411    | 36     | 52   |      | 240 | )3            | 2045       |              |     | 0.             | .49 | 63     | 0.356 | 2         | ľ          | 0.643  | 36       | 0.4625   |        |  |   |     |  |     |  |
| 5                             | 320    | 31     | 7    |      | 248 | 30            | 2291       |              |     | 0.             | .44 | 87     | 0.377 | 2         | ľ          | 0.582  | 27       | 0.4229   |        |  |   |     |  |     |  |
| 10                            | 352    | 30     | 8    |      | 230 | )5            | 2281       |              |     | 0.             | .37 | 40     | 0.394 | 7         | ľ          | 0.496  | 59       | 0.5368   |        |  |   |     |  |     |  |
| 15                            | 313    | 29     | 5    |      | 253 | 32            | 2538       |              |     | 0.4            | 445 | 555    | 0.499 | 7         | ľ          | 0.579  | 92       | 0.6058   |        |  |   |     |  |     |  |
| 20                            | 359    | 36     | 7    |      | 205 | 55            | 2611       |              | 1   | 0.             | .49 | 29     | 0.439 | 9         | ľ          | 0.618  | 36       | 0.5724   |        |  |   |     |  |     |  |
| 25                            | 325    | 31     | 3    |      | 226 | 51            | 2700       |              | 1   | 0.             | .43 | 28     | 0.485 | 4         | ľ          | 0.546  | 65       | 0.6335   |        |  |   |     |  |     |  |
| 30                            | 381    | 34     | .9   |      | 232 | 20            | 2542       |              |     | 0.             | .47 | 50     | 0.474 | 2         | ľ          | 0.640  | )2       | 0.6112   |        |  |   |     |  |     |  |
| 35                            | 362    | 33     | 2    |      | 267 | 70            | 3178       |              |     | 0.             | .34 | 60     | 0.496 | 0         |            | 0.416  | 52       | 0.6651   |        |  |   |     |  |     |  |
| 40                            | 399    | 33     | 0    |      | 235 | 59            | 2650       |              |     | 0.             | .33 | 39     | 0.491 | 2         | ľ          | 0.641  | 6        | 0.6467   |        |  |   |     |  |     |  |
| 45                            | 615    | 36     | 9    |      | 243 | 34            | 2619       |              | 0.5 |                | .55 | 0.4316 |       | 6         | ľ          | 0.7192 |          | 0.6016   |        |  |   |     |  |     |  |
| MEAN                          | 384    | 33     | 4    |      | 238 | 82            | 2546       | 546          |     |                | ns  |        | ns    |           |            | ns     |          | ns       |        |  |   |     |  |     |  |
| P <sub>2</sub> O <sub>5</sub> | ND     | VI(J   | lune | e 30 | ))  |               | NDVI       | DVI (July 7) |     | 7) NDVI (Jul   |     | July   | 14    | )         |            | NDVI ( | July 30) |          |        |  |   |     |  |     |  |
| rate<br>(kg/ha)               | L-T    | ,      |      | S-   | Т   |               | L-T        | S-T          |     |                | ]   | L-T    | 5     | <b>S-</b> | Т          |        | L-T      | S-T      |        |  |   |     |  |     |  |
| 0                             | 0.789  | 9      | 0    | .64  | 90  |               | 0.8513     | 0.           | 79' | 78             |     | 0.     | 8096  | 0.        | 78         | 838    |          | 0.7378   | 0.7055 |  |   |     |  |     |  |
| 5                             | 0.759  | 2      | 0    | .62  | 256 |               | 0.8551     | 0.           | 78  | 90             |     | 0.     | 8043  | 0.        | 78         | 825    |          | 0.7789   | 0.7233 |  |   |     |  |     |  |
| 10                            | 0.741  | 8      | 0    | .75  | 566 |               | 0.8331     | 0.           | 83  | 54             |     | 0.     | 7958  | 0.        | <b>8</b> 4 | 100    |          | 0.7281   | 0.7358 |  |   |     |  |     |  |
| 15                            | 0.7476 | ,<br>) | 0    | .77  | 38  |               | 0.8488     | 0.           | 85  | 61             |     | 0.     | 7911  | 0.        | <b>8</b> 4 | 86     |          | 0.7245   | 0.7480 |  |   |     |  |     |  |
| 20                            | 0.777  | 0      | 0    | .76  | 51  |               | 0.8395 0.8 |              | 84  | 16             |     | 0.     | 7998  | 0.        | 83         | 353    |          | 0.7211   | 0.7434 |  |   |     |  |     |  |
| 25                            | 0.764  | 1      | 0    | .79  | 25  |               | 0.8340 0.8 |              | 85' | 70             |     | 0.     | 7786  | 0.        | <b>8</b> 4 | 79     |          | 0.7473   | 0.7561 |  |   |     |  |     |  |
| 30                            | 0.769  | 97     | 0    | .77  | /14 |               | 0.8427 0.8 |              | 84′ | 73             |     | 0.     | 7787  | 0.        | 82         | .96    |          | 0.7520   | 0.7332 |  |   |     |  |     |  |
| 35                            | 0.665  | 52     | 0    | .81  | 00  |               | 0.8049 0.  |              | 85  | 00             |     | 0.     | 8025  | 0.        | 83         | 321    |          | 0.7288   | 0.7748 |  |   |     |  |     |  |
| 40                            | 0.784  | 6      | 0    | .8(  | 85  |               | 0.8546     | 0.           | 862 | 25             |     | 0.     | 7739  | 0.        | <b>8</b> 4 | 41     |          | 0.6525   | 0.7581 |  |   |     |  |     |  |
| 45                            | 0.827  | 7      | 0    | .79  | 33  |               | 0.8714     | 0.           | 864 | 41             |     | 0.     | 8028  | 0.        | <b>8</b> 4 | 85     |          | 0.7538   | 0.7563 |  |   |     |  |     |  |

Table 26. The effects of phosphorus fertilizer rate on the yield (kg/ha) and NDVI on spring wheat under long-term and short-term no-till in 2004.

### Study #6: The effects of long-term and short-term no-till on the response of spring wheat to post emergent applications of liquid nitrogen fertilizer in 2004.

There is a lot of interest in looking at other nitrogen management strategies in order to manage more effectively crop production risks. Currently there is research looking at post emergent applications of liquid nitrogen as a surface band at different times post seeding in wheat and canola. The present field study offered the opportunity of testing the concept more fully and determining if the risks of this nitrogen management approach are lower in long-term than short-term no-till fields. A summary of pertinent agronomic information is given in Table 27. The soil test results, averaged over the three samples taken from each replicate of the study, and the amount of N used in the study is given in Table 28. It was assumed that the soil test results indicated very low on the short-term area and higher on the long-term area but the soil test results indicated very little difference in residual N between the two sites.

The treatments of the study were chosen to compare putting all the nitrogen (urea) down at seeding time in a mid-row band on 16" spacing vs putting 33% down at seeding in a mid-row band using urea and the remainder at the 1, 3 or 5 leaf stage using liquid UAN as a surface band or putting 100% down after seeding at the 1, 3 or 5 leaf stage as a surface band using liquid UAN. We were interested in overall crop production and grain protein content. We also did some spectral measurements with the GreenSeeker<sup>tm</sup> instrument which provides measures of Normalized Difference Vegetation Index (NDVI). NDVI is calculated as the ratio of the infra-red and red bands using the relationship of (Infra-red - Red)/(Infra-red + Red). NDVI is an indirect measurement of crop biomass. Chlorophyll absorbs radiation in the red band and as biomass accumulates, more of the near-infra-red is being reflected. This means that the higher the values for NDVI, the more the red band is being absorbed and consequently more chlorophyll is present hence more biomass. Measurements were conducted at two different times, July 2 ( flag leaf just emerged) and on July 17 (early grain fill). A summary of the GreenSeeker measurements is provided in Tables 31-34.

A separate analysis was done for each field history ie LTNT and STNT. The study also collected data with the GreenSeeker<sup>tm</sup> sensor in order to allow us to build an application algorithm. The pertinent agronomic information for the two sites is given in Tables 27 and 28.

For the long-term no-till site, there was an effect of nitrogen on grain protein level but no effect from placement and timing even though the nitrogen applied at the 1-1.5 leaf stage tended to have lower protein levels (Table 29). With the short-term site, there was no effect of N on grain protein and the timing and placement also had no effect as well (Table 29). The difference in results between the two sites reflects the differences in the nitrogen supplying power of the two soils due to differences in management history.

With the yield data, there was an overall response to N for the LTNT site and overall the N applied at seeding tended to produce higher grain yields than the later post-emergent N applications (Table 30). However, when 33% of the N was applied at time of seeding, the yield differences between all N applied at seeding vs N applied post-emergent, were not existent. Also the post-emergent N applications with 33% of the N upfront and the balance at different leaf stages produced better yields than when all N was applied in a post-emergent fashion. These differences were not present at the 1-1.5 leaf stage but were present at the 3 and 5 leaf stages.

With the short-term no-till site, we observed an overall response to nitrogen and overall the yields with the N all applied at time of seeding was better than when applied in a post-emergent fashion (Table 30). We also observed that unlike the LTNT site, putting 33% of the fertilizer at seeding and the balance pot-emergent did not alleviate the better yields of all the N put down at time of seeding. If fact there was no difference between 33% of the fertilizer at seeding with the balance of N in both cases applied in a post-emergent fashion. The grain yields when the post-emergent N was applied at the 1-1.5 leaf stage were not different than when N was all applied at seeding. The reduction in grain yields increased as the post emergent N application was applied at the 3 and 5 leaf stage.

In order to make post-emergent N applications work, we will need to work with more than 33% of the fertilizer N applied at time of seeding in order to reduce the potential risks associated with this practise. This will be necessary if we are to make the GreenSeeker sensor work to our advantage in terms of assisting in making more accurate predictions of crop needs for nitrogen.

| Variable                                               | Long-term No-Till                                                                                                                                                                                | Short-term No-Till                                                                                                                                                                               |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cultivar                                               | Prodigy                                                                                                                                                                                          | Prodigy                                                                                                                                                                                          |
| Seeding Date                                           | May 4                                                                                                                                                                                            | May 4                                                                                                                                                                                            |
| Seeding Rate                                           | 134 kg/ha                                                                                                                                                                                        | 134 kg/ha                                                                                                                                                                                        |
| Harvest Date                                           | Sept 4                                                                                                                                                                                           | Sept 4                                                                                                                                                                                           |
| 1-1.5 Leaf Stage                                       | May 27                                                                                                                                                                                           | May 27                                                                                                                                                                                           |
| 3-3.5 Leaf Stage                                       | June 5                                                                                                                                                                                           | June 5                                                                                                                                                                                           |
| 5-5.5 Leaf Stage                                       | June 16                                                                                                                                                                                          | June 16                                                                                                                                                                                          |
| Crop Stage July 2 (First Reading with<br>GeenSeeker)   | Flag leaf emerged and erect                                                                                                                                                                      | Flag leaf emerged and erect                                                                                                                                                                      |
| Crop Stage July 17 (Second Reading<br>with GeenSeeker) | early grain fill                                                                                                                                                                                 | early grain fill                                                                                                                                                                                 |
| Herbicide Use                                          |                                                                                                                                                                                                  |                                                                                                                                                                                                  |
| Pre-Seeding Burnoff                                    | Glyphos @667 gai /ha on<br>May 7                                                                                                                                                                 | Glyphos @667 gai /ha on<br>May 7                                                                                                                                                                 |
| In-Crop Herbicide                                      | Lontrel @98.9 gai/ha on<br>June 16<br>MCPA ester @553.5 gai/ha<br>on June 16<br>Attain @ 142.3 gai/ha on<br>June 16<br>Achieve @ 197.7 gai/ha on<br>June 16<br>Glyphos @ 890 gai/ha on<br>Aug 25 | Lontrel @98.9 gai/ha on June<br>16<br>MCPA ester @553.5 gai/ha<br>on June 16<br>Attain @ 142.3 gai/ha on<br>June 16<br>Achieve @ 197.7 gai/ha on<br>June 16<br>Glyphos @ 890 gai/ha on<br>Aug 25 |
| Post Harvest                                           | -                                                                                                                                                                                                | -                                                                                                                                                                                                |
| Seeding Implement                                      | Edwards Hoe Drill - 8"<br>spacing                                                                                                                                                                | Edwards Hoe Drill -<br>8"spacing                                                                                                                                                                 |

 Table 27. Other pertinent agronomic information in 2004.

| Soil Test NO3-N (kg/ha)<br>0-30cm                                 | 23                                      | 28                                      |  |  |
|-------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--|--|
| Soil Test PO4-P (kg/ha)<br>0-30 cm                                | 39                                      | 15                                      |  |  |
| Potassium Sulfate Applied (kg/ha)                                 | 119 kg/ha surface<br>broadcast on May 7 | 119 kg/ha surface broadcast<br>on May 7 |  |  |
| Total Urea-N Applied (kg/ha)                                      | 70 kg/ha mid-row band at seeding        | 70 kg/ha mid-row band at seeding        |  |  |
| P <sub>2</sub> O <sub>5</sub> fertilizer applied (kg/ha) 11-52-00 | 58 kg/ha seed-placed                    | 58 kg/ha seed placed                    |  |  |
| Soil pH                                                           | 7.9                                     | 8.0                                     |  |  |
| Salinity Rating                                                   | Non-saline                              | Non-saline                              |  |  |
| Soil Texture                                                      | Clay loam                               | Clay loam                               |  |  |

Table 28. Soil test levels for  $NO_3$ -N and  $PO_4$  (kg/ha) long-term and short-term no-till in 2004 and amount of N used in the study.

| Length of No-Till | NO <sub>3</sub> -N (0-24'')<br>kg/ha | PO <sub>4</sub> (0-6")<br>kg/ha | Total N Applied<br>kg/ha |
|-------------------|--------------------------------------|---------------------------------|--------------------------|
| Short-term        | 28                                   | 15                              | 108                      |
| Long-term         | 23                                   | 39                              | 108                      |

|                 |                 |                                                                      | Long-Term No-7                                                                                            | Fill                                     |            |       |      |
|-----------------|-----------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|------------|-------|------|
| Ν               | % Amount of     | Check                                                                |                                                                                                           | Crop                                     | ) Leaf Sta | ge    |      |
| Placement       | N Applied       |                                                                      | At Seeding                                                                                                | 1-1.5                                    | 3-3.5      | 5-5.5 | Mean |
| Check           | 0               | 13.1                                                                 | -                                                                                                         | -                                        | -          | -     | 13.1 |
| Mid-row<br>band | 100             | -                                                                    | 13.7                                                                                                      | -                                        | -          | -     | 13.7 |
| Mid-row<br>band | 33              | -                                                                    | -                                                                                                         | 13.4                                     | 14.0       | 14.0  | 13.8 |
| Mid-row<br>band | 0               | -                                                                    | -                                                                                                         | 13.3                                     | 13.9       | 14.1  | 13.8 |
|                 | Mean            | 13.1                                                                 | 13.7                                                                                                      | 13.4                                     | 14.0       | 14.1  |      |
| CONTRAST        | Mid-Row band ve | ALL Surfa<br>s ALL Surf<br>reatments<br>s N at the 1<br>s N at the 1 | ace Dribble Treat<br>face Dribble Treat<br>VS Surface Dribb<br>1-1.5 Leaf Stage: 1<br>3-3.5 Leaf Stage: 1 | ments and to<br>ble and Star<br>ns<br>ns |            |       |      |
|                 |                 |                                                                      | Short-Term No-'                                                                                           | Till                                     |            |       |      |
| Ν               | % Amount of     | Check                                                                |                                                                                                           | Crop                                     | ) Leaf Sta | ige   |      |
| Placement       | N Applied       |                                                                      | At Seeding                                                                                                | 1-1.5                                    | 3-3.5      | 5-5.5 | Mean |
| Check           | 0               | 12.6                                                                 | -                                                                                                         | -                                        | -          | -     | 12.6 |
| Mid-row<br>band | 100             | -                                                                    | 12.1                                                                                                      | -                                        | -          | -     | 12.1 |
| Mid-row<br>band | 33              | -                                                                    | -                                                                                                         | 12.0                                     | 12.7       | 12.6  | 12.4 |
| Mid-row<br>band | 0               | -                                                                    | -                                                                                                         | 12.2                                     | 12.9       | 12.8  | 12.6 |
|                 | Mean            | 12.6                                                                 | 12.1                                                                                                      | 12.1                                     | 12.8       | 12.7  |      |

 Table 29. The effects of length of no-till and nitrogen management on the grain protein (%) spring wheat in 2004.

| cv=4.4%  |                                                                            |
|----------|----------------------------------------------------------------------------|
| CONTRAST | Check vs Rest:ns                                                           |
| CONTRAST | MidRow band vs REST of N treatments: ns                                    |
| CONTRAST | MidRow band vs ALL Surface Dribble Treatments: ns                          |
| CONTRAST | Mid-Row band vs ALL Surface Dribble Treatments and Starter N:ns            |
| CONTRAST | Surface Dribble Treatments VS Surface Dribble and Starter N Treatments: ns |
| CONTRAST | Mid-Row Band vs N at the 1-1.5 Leaf Stage: ns                              |
| CONTRAST | Mid-Row Band vs N at the 3-3.5 Leaf Stage: ns                              |
| CONTRAST | Mid-Row Band vs N at the 5-5.5 Leaf Stage: ns                              |

|                                                  |                                                                                            |                                              | Long-Term No-7                                            | Fill                                      |                     |                 |              |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------|---------------------|-----------------|--------------|
| Ν                                                | % Amount of                                                                                | Check                                        |                                                           | Crop                                      | ) Leaf Sta          | ge              |              |
| Placement                                        |                                                                                            |                                              | At Seeding                                                | 1-1.5                                     | 3-3.5               | 5-5.5           | Mean         |
| Check                                            | 0                                                                                          | 1024                                         | -                                                         | -                                         | -                   | -               | 1024         |
| Mid-row<br>band                                  | 100                                                                                        | -                                            | 2068                                                      | -                                         | -                   | -               | 2068         |
| Mid-row<br>band                                  | 33                                                                                         | -                                            | -                                                         | 2003                                      | 1841                | 1833            | 1892         |
| Mid-row<br>band                                  | 0                                                                                          | -                                            | -                                                         | 1865                                      | 1428                | 1571            | 1621         |
|                                                  | Mean                                                                                       | 1024                                         | 2068                                                      | 1934                                      | 1635                | 1702            |              |
| CONTRAST<br>CONTRAST                             | Mid-Row band vs<br>Surface Dribble 7<br>Mid-Row Band v<br>Mid-Row Band v<br>Mid-Row Band v | Freatments<br>is N at the 1<br>is N at the 3 | VS Surface Dribb<br>I-1.5 Leaf Stage: 1                   | ole and Star                              |                     |                 | 139          |
|                                                  |                                                                                            | s N at the t                                 |                                                           |                                           |                     |                 |              |
|                                                  |                                                                                            |                                              |                                                           | 0.0240                                    |                     |                 |              |
| N                                                | % Amount of                                                                                |                                              | 5-5.5 Leaf Stage: (                                       | 0.0240<br><b>Fill</b>                     | ) Leaf Sta          | ge              |              |
| N<br>Placement                                   | % Amount of<br>N Applied                                                                   |                                              | 5-5.5 Leaf Stage: (                                       | 0.0240<br><b>Fill</b>                     | ) Leaf Sta<br>3-3.5 | ge<br>5-5.5     | Mean         |
|                                                  |                                                                                            |                                              | 5-5.5 Leaf Stage: (<br>Short-Term No-7                    | 0.0240<br>Till<br>Crop                    |                     |                 | Mean<br>1531 |
| Placement                                        | N Applied                                                                                  | Check                                        | 5-5.5 Leaf Stage: (<br>Short-Term No-7                    | 0.0240<br>Till<br>Crop                    |                     |                 |              |
| Placement<br>Check<br>Mid-row                    | N Applied                                                                                  | Check                                        | 5-5.5 Leaf Stage: (<br>Short-Term No-'<br>At Seeding<br>- | 0.0240<br>Till<br>Crop                    |                     |                 | 1531         |
| Placement<br>Check<br>Mid-row<br>band<br>Mid-row | <b>N Applied</b> 0 100                                                                     | Check                                        | 5-5.5 Leaf Stage: (<br>Short-Term No-'<br>At Seeding<br>- | 0.0240<br>Fill<br>Crop<br>1-1.5<br>-<br>- | 3-3.5<br>-<br>-     | 5-5.5<br>-<br>- | 1531<br>2612 |

Table 30. The effects of length of no-till and nitrogen management on the grain yield (kg/ha) spring wheat in 2004.

| cv=8.9%  |                                                                            |
|----------|----------------------------------------------------------------------------|
|          | Check vs Rest: 0.0001                                                      |
|          | MidRow band vs REST of N treatments: 0.0018                                |
|          | MidRow band vs ALL Surface Dribble Treatments: 0.0012                      |
|          | Mid-Row band vs ALL Surface Dribble Treatments and Starter N:0.0076        |
| CONTRAST | Surface Dribble Treatments VS Surface Dribble and Starter N Treatments: ns |
| CONTRAST | Mid-Row Band vs N at the 1-1.5 Leaf Stage: ns                              |
|          | Mid-Row Band vs N at the 3-3.5 Leaf Stage: 0.0003                          |
| CONTRAST | Mid-Row Band vs N at the 5-5.5 Leaf Stage: 0.0031                          |
|          |                                                                            |

 Table 31. The effects of zero-till and nitrogen management on plants per metre squared, grain yield and NDVI readings in Abbey Spring Wheat 2004.

| N                      | PI  | PMS | NDVI (. | June 15) | NDVI ( | June 23) |
|------------------------|-----|-----|---------|----------|--------|----------|
| Placeme<br>nt          | L-T | S-T | L-T     | S-T      | L-T    | S-T      |
| Check                  | 390 | 410 | 0.4052  | 0.4351   | 0.3642 | 0.4675   |
| MR @<br>Seeding        | 398 | 411 | 0.4869  | 0.5334   | 0.5963 | 0.6825   |
| 1-1.5<br>leaf<br>stage | 366 | 359 | 0.5159  | 0.5130   | 0.6229 | 0.6505   |
| 3-3.5<br>leaf<br>stage | 448 | 381 | 0.4086  | 0.4275   | 0.4215 | 0.4394   |
| 5-5.5<br>leaf<br>stage | 444 | 419 | 0.4259  | 0.4351   | 0.3970 | 0.5060   |
| Start +<br>1-1.5       | 397 | 352 | 0.5055  | 0.5420   | 0.6525 | 0.6770   |
| Start +<br>3-3.5       | 377 | 342 | 0.4621  | 0.4911   | 0.4531 | 0.4939   |
| Start +<br>5-5.5       | 364 | 374 | 0.4508  | 0.4763   | 0.4497 | 0.5504   |
|                        |     | -   |         |          |        |          |

| N                   |        | June 30) | NDVI ( | (July 7) | NDVI ( | July 14) | NDVI ( | July 30) |
|---------------------|--------|----------|--------|----------|--------|----------|--------|----------|
| Placement           | L-T    | S-T      | L-T    | S-T      | L-T    | S-T      | L-T    | S-T      |
| Check               | 0.4285 | 0.5367   | 0.5289 | 0.6486   | 0.5098 | 0.6189   | 0.4800 | 0.5215   |
| MR @<br>Seeding     | 0.7231 | 0.7781   | 0.7980 | 0.8303   | 0.7443 | 0.8161   | 0.6126 | 0.6759   |
| 1-1.5 leaf<br>stage | 0.7011 | 0.7364   | 0.7793 | 0.8078   | 0.7353 | 0.7526   | 0.6102 | 0.6206   |
| 3-3.5 leaf<br>stage | 0.4829 | 0.5393   | 0.6091 | 0.6663   | 0.5886 | 0.6353   | 0.5775 | 0.5973   |
| 5-5.5 leaf<br>stage | 0.4496 | 0.5650   | 0.5773 | 0.6998   | 0.5378 | 0.6723   | 0.6052 | 0.6439   |
| Start + 1-<br>1.5   | 0.7188 | 0.7328   | 0.7943 | 0.7999   | 0.7347 | 0.7542   | 0.6409 | 0.6365   |
| Start + 3-<br>3.5   | 0.5515 | 0.5930   | 0.7049 | 0.7216   | 0.6497 | 0.6779   | 0.6330 | 0.5815   |
| Start + 5-<br>5.5   | 0.5433 | 0.6363   | 0.6749 | 0.7350   | 0.6223 | 0.6988   | 0.6284 | 0.6287   |
|                     |        |          |        |          |        | 1        | 1      |          |

Table 32. The effects of zero-till and nitrogen management on NDVI readings on different dates in Abbey Spring Wheat 2004.

Table 33. Correlation coefficients (90) between NDVI values and grain protein and grain yield for both field histories and combined in 2004.

| GreenSeeker       |      | Grain Yield         | 1    |     | Grain Protein |         |     |  |
|-------------------|------|---------------------|------|-----|---------------|---------|-----|--|
|                   | All  | All L-T N-T S-T N-T |      | All | L-T N-T       | S-T N-T |     |  |
| # of Observations | 48   | 24                  | 24   |     | 48            | 24      | 24  |  |
| NDVI - June 15    | 16.3 | 0.1                 | 12.0 |     | 5.7           | 3.7     | 3.7 |  |
| NDVI - June 23    | 14.4 | 16.5                | 11.0 |     | 5.5           | 3.6     | 3.9 |  |
| NDVI - June 30    | 12.6 | 15.6                | 8.7  |     | 5.5           | 3.6     | 3.8 |  |
| NDVI - July 7     | 11.1 | 13.5                | 7.4  |     | 5.6           | 3.7     | 4.0 |  |
| NDVI - July 14    | 10.7 | 11.0                | 6.9  |     | 5.4           | 3.6     | 4.0 |  |
| NDVI - July 30    | 13.4 | 12.2                | 10.2 |     | 6.1           | 3.5     | 4.4 |  |

| Field<br>History | NDVI<br>Measurement | # of<br>Observations | Linear Equation                 | R <sup>2</sup><br>(%) | Significance |
|------------------|---------------------|----------------------|---------------------------------|-----------------------|--------------|
|                  |                     |                      |                                 |                       |              |
| Long-Term        | June 15             | 24                   | kg/ha = 1.19 + 66.62[NDVI]      | -                     | 0.0001       |
|                  | June 23             | 24                   | kg/ha = -787.01 + 5443.34[NDVI] | 48                    | 0.0002       |
|                  | June 30             | 24                   | kg/ha = 480.18 + 2473.94[NDVI]  | 53                    | 0.0001       |
|                  | July 7              | 24                   | kg/ha = 246.62 + 2535.15[NDVI]  | 65                    | 0.0001       |
|                  | July 14             | 24                   | kg/ha = -466.88 + 3176.83[NDVI] | 77                    | 0.0001       |
|                  | July 30             | 24                   | kg/ha = -490.12 + 3426.41[NDVI] | 71                    | 0.0001       |
| Short-Term       | June 15             | 24                   | kg/ha = 174.96 + 4067.31[NDVI]  | 63                    | 0.0001       |
|                  | June 23             | 24                   | kg/ha = 405.81 + 3095.13[NDVI]  | 69                    | 0.0001       |
|                  | June 30             | 24                   | kg/ha = -113.40 +3513.34[NDVI]  | 81                    | 0.0001       |
|                  | July 7              | 24                   | kg/ha =-1310.80 +4663.57[NDVI]  | 86                    | 0.0001       |
|                  | July 14             | 24                   | kg/ha =-1189.43 +4727.93[NDVI]  | 88                    | 0.0001       |
|                  | July 30             | 24                   | kg/ha =-1311.93 +5619.48[NDVI]  | 74                    | 0.0001       |

Table 34. Linear regression equations between grain yield and NDVI measurements on various datesduring the 2004 growing season.

## Study #7 - To determine the effects of long-term and short-term no-till production on fertilized and unfertilized malting barley production in 2004.

This study was undertaken to determine the implications of LTNT and STNT on nutrient uptake and nitrous oxide emissions, a potent greenhouse gas. This project is part of a larger GAPS project under the direction of Dr Cindy Grant.

Only the results related to nutrient uptake, biomass accumulation and grain yield will be discussed. A summary of the pertinent agronomic information is presented in Table 35. Fertilizer reduced plant populations but increased head numbers and grain yield. The overall grain yield was better on the STNT than the LTNT. This is a reflection of the areas that we chose to do the studies. The topsoil was visually better and deeper on the STNT site thereby skewing the results (Table 36). We also conducted NDVI measurements in order to start building an algorithm for barley to go with the GreenSeeker sensor. The results can be viewed in Tables 37-39.

The data for dry matter accumulation is provided in Tables 40 and 41.

The data for nutrient uptake is provided in Table 42 for the fertilizer plot and the LTNT and STNT site and Table 43 for the unfertilized plots and the LTNT and STNT sites.

A series of figures were drafted in order to graphically represent the information on dry matter and nutrient uptake (Figures 1-4).

| Variable                                       | Long-Term No-Till Field                                                                                                                             | Short-Term No-Till Field                                                                                                                            |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Crop Variety                                   | AC Metcalfe                                                                                                                                         | AC Metcalfe                                                                                                                                         |
| Seeding Date                                   | May 5                                                                                                                                               | May 5                                                                                                                                               |
| Harvest Date                                   | Sept 7                                                                                                                                              | Sept 7                                                                                                                                              |
| Herbicide Use                                  |                                                                                                                                                     |                                                                                                                                                     |
| Pre-Seeding Burnoff                            | Glyphos 667 gai/h                                                                                                                                   | a applied on May 7                                                                                                                                  |
| In-Crop Herbicide                              | Lontrel @98.9 gai/ha on June 16<br>MCPA ester @553.5 gai/ha on<br>June 16<br>Achieve @197.7 gai/ha on June<br>16<br>Attain @142.3 gai/ha on June 16 | Lontrel @98.9 gai/ha on June 16<br>MCPA ester @553.5 gai/ha on<br>June 16<br>Achieve @197.7 gai/ha on June<br>16<br>Attain @142.3 gai/ha on June 16 |
| Pre-Harvest Round-Up                           | Glyphos @890 gai/ha on Aug 25                                                                                                                       | Glyphos @890 gai/ha on Aug 25                                                                                                                       |
| Seeding Implement                              | ConservaPak Seeder on 12"<br>spacing                                                                                                                | ConservaPak Seeder on 12"<br>spacing                                                                                                                |
| Total urea N fertilized kg/ha (46-<br>00-00)   | 97                                                                                                                                                  | 97                                                                                                                                                  |
| P <sub>2</sub> O <sub>5</sub> kg/ha (11-52-00) | 48                                                                                                                                                  | 48                                                                                                                                                  |

| Table 35. Other pertinent agronomic information in 20 |
|-------------------------------------------------------|
|-------------------------------------------------------|

| Soil Test NO3-N (kg/ha)<br>0-30cm  | 22         | 18         |
|------------------------------------|------------|------------|
| Soil Test PO4-P (kg/ha)<br>0-30 cm | 29         | 7          |
| Soil pH                            | 7.9        | 8.0        |
| Salinity Rating                    | Non-saline | Non-saline |
| Soil Texture                       | Clay loam  | Clay loam  |

Table 36. Effects of nitrogen management on plants per metre squared, heads per metre squared, grain yield and bushels per acre in malting barley production in 2004.

| N rate       | РР   | MS   | HDMS |      | YIELD (kg/ha) |       |  | Bus/Acre |       |  |  |
|--------------|------|------|------|------|---------------|-------|--|----------|-------|--|--|
|              | L-T  | S-T  | L-T  | S-T  | L-T           | S-T   |  | L-T      | S-T   |  |  |
| fertilized   | 135  | 170  | 546  | 563  | 5668          | 6582  |  | 108      | 125   |  |  |
| unfertilized | 164  | 187  | 415  | 360  | 3202          | 4508  |  | 61       | 86    |  |  |
| MEAN         | 150  | 179  | 481  | 462  | 4435          | 5545  |  | 85       | 106   |  |  |
| p - level    | 0.06 | 0.18 | 0.02 | 0.02 | 0.005         | 0.002 |  | 0.005    | 0.002 |  |  |

Table 37. The effects of nitrogen management on grain protein and NDVI in malting barley production in 2004.

| N rate       |     | Protein<br>%) | NDVI (June 10) |        | NDVI (June 15) |        | NDVI (June 18) |        |  |
|--------------|-----|---------------|----------------|--------|----------------|--------|----------------|--------|--|
|              | L-T | S-T           | L-T            | S-T    | L-T            | S-T    | L-T            | S-T    |  |
| fertilized   | -   | -             | 0.2978         | 0.3058 | 0.3830         | 0.4353 | 0.3303         | 0.4538 |  |
| unfertilized | -   | -             | 0.2750         | 0.2885 | 0.3313         | 0.3565 | 0.2950         | 0.3470 |  |
| MEAN         | -   | -             | 0.2864         | 0.2972 | 0.3572         | 0.3959 | 0.3127         | 0.4004 |  |

| N rate       | NDVI (J | June 25) | NDVI (July 2) |        |  | NDVI (July 9) |        |  | NDVI (July 16) |        |  |
|--------------|---------|----------|---------------|--------|--|---------------|--------|--|----------------|--------|--|
|              | L-T     | S-T      | L-T           | S-T    |  | L-T           | S-T    |  | L-T            | S-T    |  |
| fertilized   | 0.4358  | 0.5780   | 0.6158        | 0.7290 |  | 0.7328        | 0.7858 |  | 0.7348         | 0.7775 |  |
| unfertilized | 0.3390  | 0.4005   | 0.4013        | 0.5313 |  | 0.4898        | 0.6373 |  | 0.5475         | 0.6293 |  |
| MEAN         | 0.3874  | 0.4893   | 0.5086        | 0.6302 |  | 0.6113        | 0.7116 |  | 0.6412         | 0.7034 |  |

Table 38. The effects of nitrogen management on NDVI readings on different dates in malting barley production in 2004.

Table 39. The effects of nitrogen management on NDVI readings and dry matter (kg/ha) on different dates in malting barley production in 2004.

| N rate       | NDVI ( | July 23) | NDVI ( | NDVI (July 30) |  | DMAT(June 10) |       | DMAT (June18) |     |  |
|--------------|--------|----------|--------|----------------|--|---------------|-------|---------------|-----|--|
|              | L-T    | S-T      | L-T    | S-T            |  | L-T           | S-T   | L-T           | S-T |  |
| fertilized   | 0.7783 | 0.799    | 0.6758 | 0.7105         |  | 189           | 303   | 328           | 615 |  |
| unfertilized | 0.6188 | 0.7098   | 0.5425 | 0.5610         |  | 123           | 205   | 180           | 361 |  |
| MEAN         | 0.6986 | 0.7544   | 0.6092 | 0.6358         |  | 156           | 254   | 254           | 488 |  |
| p - level    | -      | -        | -      | -              |  | 0.01          | 0.009 | 0.005         | ns  |  |

Table 40. The effects of nitrogen management on dry matter (kg/ha) for different dates in malting barley production in 2004.

| N rate       | DMAT | (June 25) | DMAT  | (July 2) | DMAT   | (July 9) | DMAT   | (July 16) |
|--------------|------|-----------|-------|----------|--------|----------|--------|-----------|
|              | L-T  | S-T       | L-T   | S-T      | L-T    | S-T      | L-T    | S-T       |
| fertilized   | 804  | 1312      | 1911  | 1870     | 2321   | 3019     | 3839   | 5856      |
| unfertilized | 336  | 583       | 746   | 1132     | 886    | 1714     | 1649   | 2592      |
| MEAN         | 570  | 948       | 1329  | 1501     | 1604   | 2367     | 2744   | 4224      |
| p - level    | 0.01 | 0.02      | 0.001 | ns       | 0.0009 | ns       | 0.0008 | 0.001     |

| N rate       | DMAT       | (July 23) |  | DMAT ( | (July 30) | DMAT (Aug 27) |       |  |  |
|--------------|------------|-----------|--|--------|-----------|---------------|-------|--|--|
|              | L-T        | L-T S-T   |  | L-T    | S-T       | L-T           | S-T   |  |  |
| fertilized   | 6767       | 8161      |  | 7784   | 10236     | 9293          | 12697 |  |  |
| unfertilized | 3429       | 5479      |  | 3535   | 5258      | 5693          | 8202  |  |  |
| MEAN         | 5098       | 6820      |  | 5660   | 7747      | 7493          | 10450 |  |  |
| p - level    | 0.008 0.06 |           |  | 0.001  | 0.01      | 0.05          | 0.008 |  |  |

 Table 41. The effects of nitrogen management on dry matter (kg/ha) for different dates in malting barley production in 2004.

 Table 42
 - Fertilized Plots of Malting Barley in 2004

|                        | Dry Ma<br>(kg/ha) | atter | Total N<br>(kg/ha) |     | Total<br>PUpta<br>(kg/ha |    | Total K<br>Uptake | (kg/ha) | Total S<br>Uptake<br>(kg/ha) |    |  |
|------------------------|-------------------|-------|--------------------|-----|--------------------------|----|-------------------|---------|------------------------------|----|--|
| Julian<br>Date         | LT                | ST    | LT                 | ST  | LT                       | ST | LT                | ST      | LT                           | ST |  |
| 162                    | 189               | 303   | 9                  | 15  | 1                        | 1  | 7                 | 13      | 0                            | 1  |  |
| 170                    | 328               | 615   | 14                 | 26  | 1                        | 3  | 14                | 26      | 1                            | 2  |  |
| 177                    | 804               | 1312  | 35                 | 51  | 4                        | 5  | 32                | 56      | 2                            | 5  |  |
| 184                    | 1911              | 1870  | 61                 | 56  | 7                        | 6  | 71                | 67      | 5                            | 5  |  |
| 191                    | 2321              | 3018  | 55                 | 63  | 7                        | 8  | 70                | 87      | 5                            | 6  |  |
| 198                    | 3839              | 5856  | 68                 | 97  | 9                        | 13 | 87                | 146     | 6                            | 11 |  |
| 205                    | 6767              | 8161  | 115                | 118 | 18                       | 19 | 134               | 154     | 10                           | 13 |  |
| 212                    | 7784              | 10236 | 115                | 126 | 19                       | 19 | 109               | 153     | 11                           | 14 |  |
| 240                    | 9293              | 12697 | 51                 | 52  | 8                        | 7  | 119               | 165     | 9                            | 12 |  |
| 250<br>(straw<br>only) | 3625              | 6116  | -                  | -   | -                        | -  | -                 | -       | -                            | -  |  |
| grain<br>only          | 4435              | 5545  |                    |     |                          |    |                   |         |                              |    |  |

|                        | Dry Ma<br>(kg/ha) |      | Total N<br>Uptake<br>(kg/ha) |    | Total PU<br>(kg/ha) | ptake | Total K<br>Uptake () | kg/ha) | Total S<br>(kg/ |    |
|------------------------|-------------------|------|------------------------------|----|---------------------|-------|----------------------|--------|-----------------|----|
| Julian<br>Date         | LT                | ST   | LT                           | ST | LT                  | ST    | LT                   | ST     | LT              | ST |
| 162                    | 123               | 205  | 4                            | 8  | 0                   | 1     | 5                    | 8      | 0               | 1  |
| 170                    | 180               | 361  | 6                            | 13 | 1                   | 1     | 8                    | 13     | 1               | 1  |
| 177                    | 336               | 582  | 12                           | 22 | 2                   | 3     | 13                   | 22     | 1               | 2  |
| 184                    | 746               | 1132 | 20                           | 33 | 3                   | 4     | 28                   | 40     | 2               | 3  |
| 191                    | 886               | 1714 | 22                           | 40 | 4                   | 6     | 28                   | 54     | 2               | 5  |
| 198                    | 1649              | 2592 | 33                           | 41 | 6                   | 7     | 38                   | 59     | 3               | 5  |
| 205                    | 3428              | 5479 | 54                           | 85 | 11                  | 14    | 64                   | 110    | 5               | 9  |
| 212                    | 3535              | 5258 | 56                           | 63 | 11                  | 12    | 54                   | 67     | 6               | 8  |
| 240                    | 5692              | 8202 | 42                           | 38 | 9                   | 8     | 82                   | 106    | 8               | 8  |
| 250<br>(straw<br>only) | 2491              | 3694 | -                            | -  | -                   | -     | -                    | -      | -               | -  |
| grain<br>only          | 4435              | 5545 |                              |    |                     |       |                      |        |                 |    |

 Table 43
 - Unfertilized Plots of Malting Barley in 2004

Figure 1- The relationship between Nitrogen Uptake in barley and Julian Date in Short Term No-Till Production in 2004.



Figure 2- The relationship between Dry Matter in barley by Julian Date in Short Term No-Till Production in 2004.

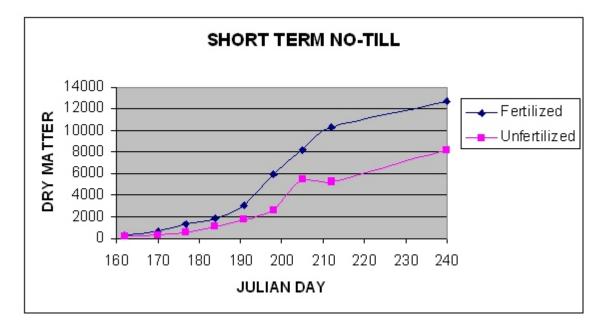



Figure 3 - The relationship between nitrogen uptake by julian date in long term no-till production in 2004.

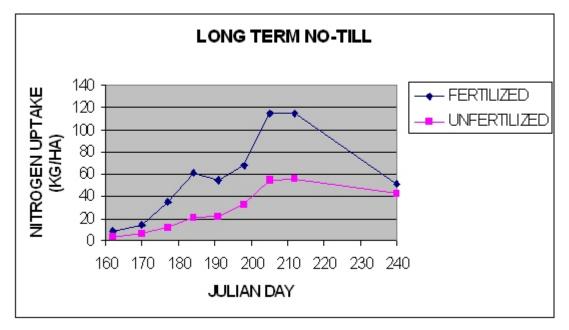
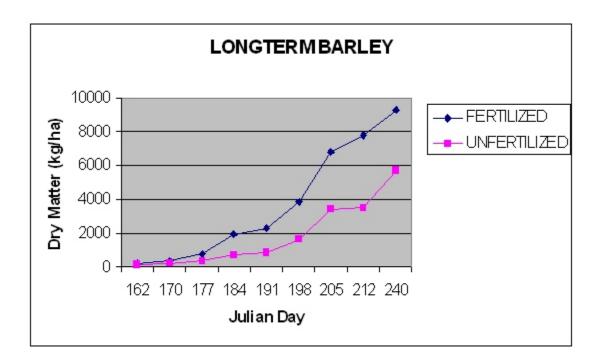




Figure 4 - The relationship between dry matter in barley by julian date in long term no-till production in 2004.



## Study #8 - To determine the effects of long-term and short-term no-till production on malt barley production at different rates of nitrogen in 2004.

This was study was added on in order to do a nitrogen rate response in barley to complement the previous study and to get additional information about malting barley production on long-term no-till sites. A summary of the pertinent agronomic information is provided in Table 44. A summary of the agronomic information is provided in Table 44 and 45. The corresponding NDVI's are also provided in Tables 45, 46 and 47. In this study, we observed higher grain yields on the LTNT than the STNT site which is opposite to the previous study showing how variables soils are (Table 44). What is most interesting are the larger grain yields of LTNT than STNT for nitrogen fertilizer rates in the range of 0-60 kg/ha. This shows the differences in nitrogen supplying power of the soil with LTNT.

| Variable                                       | Long-Term No-Till Field                                                                                                                             | Two Year No-Till Field                                                                                                                              |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Crop Variety                                   | AC Metcalfe                                                                                                                                         | AC Metcalfe                                                                                                                                         |
| Seeding Date                                   | May 4                                                                                                                                               | May 4                                                                                                                                               |
| Harvest Date                                   | Sept 7                                                                                                                                              | Sept 7                                                                                                                                              |
| Herbicide Use                                  |                                                                                                                                                     |                                                                                                                                                     |
| Pre-Seeding Burnoff                            | Glyphos 667 gai/h                                                                                                                                   | a applied on May 7                                                                                                                                  |
| In-Crop Herbicide                              | Lontrel @98.9 gai/ha on June 16<br>MCPA ester @553.5 gai/ha on<br>June 16<br>Achieve @197.7 gai/ha on June<br>16<br>Attain @142.3 gai/ha on June 16 | Lontrel @98.9 gai/ha on June 16<br>MCPA ester @553.5 gai/ha on<br>June 16<br>Achieve @197.7 gai/ha on June<br>16<br>Attain @142.3 gai/ha on June 16 |
| Pre-Harvest Round-Up                           | Glyphos @890 gai/ha on Aug 25                                                                                                                       | Glyphos @890 gai/ha on Aug 25                                                                                                                       |
| Seeding Implement                              | ConservaPak Seeder on 12"<br>spacing                                                                                                                | ConservaPak Seeder on 12"<br>spacing                                                                                                                |
| P <sub>2</sub> O <sub>5</sub> kg/ha (11-52-00) | 48                                                                                                                                                  | 48                                                                                                                                                  |
| Soil Test NO3-N (kg/ha)<br>0-30cm              | 22                                                                                                                                                  | 18                                                                                                                                                  |
| Soil Test PO4-P (kg/ha)<br>0-30 cm             | 29                                                                                                                                                  | 7                                                                                                                                                   |
| Soil pH                                        | 7.9                                                                                                                                                 | 8.0                                                                                                                                                 |
| Salinity Rating                                | Non-saline                                                                                                                                          | Non-saline                                                                                                                                          |
| Soil Texture                                   | Clay loam                                                                                                                                           | Clay loam                                                                                                                                           |

| Table 44. Other | pertinent agronomic | c information in 2004. |
|-----------------|---------------------|------------------------|
|-----------------|---------------------|------------------------|

| N rate    | PP  | MS  | HD   | MS  | YIELD | (kg/ha) | Bus/ | Acre |
|-----------|-----|-----|------|-----|-------|---------|------|------|
|           | L-T | S-T | L-T  | S-T | L-T   | S-T     | L-T  | S-T  |
| 0 kg/ha   | 159 | 160 | 505  | 322 | 2024  | 1434    | 38   | 27   |
| 20 kg/ha  | 162 | 172 | 550  | 416 | 3529  | 1720    | 67   | 33   |
| 40 kg/ha  | 165 | 176 | 640  | 539 | 4582  | 2212    | 87   | 42   |
| 60 kg/ha  | 193 | 208 | 569  | 637 | 4553  | 3775    | 87   | 72   |
| 80 kg/ha  | 209 | 193 | 772  | 615 | 4342  | 4186    | 83   | 80   |
| 100 kg/ha | 206 | 180 | 576  | 671 | 4822  | 4796    | 92   | 91   |
| 120 kg/ha | 208 | 213 | 767  | 713 | 5272  | 4855    | 100  | 92   |
| 140 kg/ha | 138 | 177 | 1061 | 630 | 5958  | 6364    | 113  | 121  |
| MEAN      | 180 | 185 | 680  | 568 | 4385  | 3668    | 83   | 70   |

Table 45. Effects of nitrogen management on plants per metre squared, heads per metre squared, grain yield and bushels per acre in malting barley production in 2004.

Table 46. The effects of nitrogen management on grain protein and NDVI in malting barley production in 2004.

| N rate |     | Grain Protein<br>(%) |  | NDVI (June 10) |        | NDVI (June 15) |        | NDVI (June 18) |        |  |
|--------|-----|----------------------|--|----------------|--------|----------------|--------|----------------|--------|--|
|        | L-T | S-T                  |  | L-T            | S-T    | L-T            | S-T    | L-T            | S-T    |  |
| 0      |     |                      |  | 0.3019         | 0.2897 | 0.3792         | 0.3559 | 0.3395         | 0.3573 |  |
| 20     |     |                      |  | 0.3059         | 0.2937 | 0.3978         | 0.3836 | 0.3795         | 0.3954 |  |
| 40     |     |                      |  | 0.3024         | 0.3050 | 0.4148         | 0.4483 | 0.3968         | 0.4750 |  |
| 60     |     |                      |  | 0.2943         | 0.3430 | 0.3788         | 0.4583 | 0.3760         | 0.5117 |  |
| 80     |     |                      |  | 0.2996         | 0.3148 | 0.4088         | 0.4415 | 0.3991         | 0.4891 |  |
| 100    |     |                      |  | 0.3081         | 0.3323 | 0.4262         | 0.4735 | 0.4112         | 0.5307 |  |
| 120    |     |                      |  | 0.3094         | 0.3142 | 0.4345         | 0.4118 | 0.4417         | 0.4892 |  |
| 140    |     |                      |  | 0.3108         | 0.3128 | 0.4266         | 0.4068 | 0.4217         | 0.4409 |  |
| MEAN   |     |                      |  | 0.3041         | 0.3132 | 0.4083         | 0.4225 | 0.3957         | 0.4612 |  |

| production in |         |          |  |        |               |  |        |          | 1 |                |        |  |
|---------------|---------|----------|--|--------|---------------|--|--------|----------|---|----------------|--------|--|
| N rate        | NDVI (. | June 25) |  | NDVI ( | NDVI (July 2) |  | NDVI   | (July 9) |   | NDVI (July 16) |        |  |
|               | L-T     | S-T      |  | L-T    | S-T           |  | L-T    | S-T      |   | L-T            | S-T    |  |
| 0             | 0.3679  | 0.3933   |  | 0.4682 | 0.4504        |  | 0.5909 | 0.5314   |   | 0.6216         | 0.5391 |  |
| 20            | 0.4505  | 0.4605   |  | 0.5792 | 0.5395        |  | 0.6537 | 0.6406   |   | 0.6948         | 0.6070 |  |
| 40            | 0.5057  | 0.5609   |  | 0.6708 | 0.6936        |  | 0.7501 | 0.7552   |   | 0.7529         | 0.7231 |  |
| 60            | 0.5010  | 0.6326   |  | 0.6748 | 0.7688        |  | 0.7535 | 0.8005   |   | 0.7651         | 0.7680 |  |
| 80            | 0.5396  | 0.6275   |  | 0.7433 | 0.7880        |  | 0.8143 | 0.8230   |   | 0.8017         | 0.8141 |  |
| 100           | 0.5574  | 0.6525   |  | 0.7450 | 0.7965        |  | 0.8081 | 0.8395   |   | 0.7938         | 0.8144 |  |
| 120           | 0.5798  | 0.6479   |  | 0.7655 | 0.8054        |  | 0.8178 | 0.8417   |   | 0.8152         | 0.8259 |  |
| 140           | 0.6068  | 0.5987   |  | 0.7701 | 0.7862        |  | 0.8390 | 0.8408   |   | 0.8235         | 0.8318 |  |
| MEAN          | 0.5136  | 0.5717   |  | 0.6771 | 0.7036        |  | 0.7534 | 0.7591   |   | 0.7586         | 0.7404 |  |

Table 47. The effects of nitrogen management on NDVI readings on different dates in malting barley production in 2004.

 Table 48. The effects of nitrogen management on NDVI readings and dry matter samples on different dates in malting barley production in 2004.

| N rate | NDVI (July 23) |        |  | NDVI (July 30) |        |
|--------|----------------|--------|--|----------------|--------|
|        | L-T            | S-T    |  | L-T            | S-T    |
| 0      | 0.6641         | 0.6170 |  | 0.5984         | 0.4661 |
| 20     | 0.7743         | 0.6675 |  | 0.6718         | 0.4997 |
| 40     | 0.7860         | 0.7688 |  | 0.7019         | 0.6101 |
| 60     | 0.8151         | 0.8275 |  | 0.7428         | 0.6661 |
| 80     | 0.8293         | 0.8560 |  | 0.7794         | 0.7395 |
| 100    | 0.8504         | 0.8547 |  | 0.7979         | 0.7541 |
| 120    | 0.8577         | 0.8155 |  | 0.7979         | 0.7774 |
| 140    | 0.8716         | 0.8713 |  | 0.8147         | 0.7959 |
| MEAN   | 0.8061         | 0.7848 |  | 0.7381         | 0.6636 |